Math, asked by desaishazi72, 1 year ago

√x-82x+81 please answer my question​

Answers

Answered by daivikmhatre89
2

Multiply the coefficient of the first term by the constant   1 • 81 = 81 

Find two factors of  81  whose sum equals the coefficient of the middle term, which is   82 .

     -81   +   -1   =   -82     -27   +   -3   =   -30     -9   +   -9   =   -18     -3   +   -27   =   -30     -1   +   -81   =   -82     1   +   81   =   82   That's it

Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  1  and  81 

                     x2 + 1x + 81x + 81

Step-4 : Add up the first 2 terms, pulling out like factors :

                    x • (x+1)

              Add up the last 2 terms, pulling out common factors :

                    81 • (x+1)

Step-5 : Add up the four terms of step 4 :

                    (x+81)  •  (x+1)

             Which is the desired factorization

Equation at the end of step  1  : (x + 81) • (x + 1) = 0 Step  2  :Theory - Roots of a product :

 2.1    A product of several terms equals zero. 

 When a product of two or more terms equals zero, then at least one of the terms must be zero. 

 We shall now solve each term = 0 separately 

 In other words, we are going to solve as many equations as there are terms in the product 

 Any solution of term = 0 solves product = 0 as well.

Solving a Single Variable Equation :

 2.2      Solve  :    x+81 = 0 

 Subtract  81  from both sides of the equation : 

                      x = -81 

Solving a Single Variable Equation :

 2.3      Solve  :    x+1 = 0 

 Subtract  1  from both sides of the equation : 

                      x = -1 

Supplement : Solving Quadratic Equation DirectlySolving  x2+82x+81  = 0 directly

Earlier we factored this polynomial by splitting the middle term. let us now solve the equation by Completing The Square and by using the Quadratic Formula

Parabola, Finding the Vertex :

 3.1      Find the Vertex of   y = x2+82x+81

Parabolas have a highest or a lowest point called the Vertex .   Our parabola opens up and accordingly has a lowest point (AKA absolute minimum) .   We know this even before plotting  "y"  because the coefficient of the first term, 1 , is positive (greater than zero). 

 Each parabola has a vertical line of symmetry that passes through its vertex. Because of this symmetry, the line of symmetry would, for example, pass through the midpoint of the two  x -intercepts (roots or solutions) of the parabola. That is, if the parabola has indeed two real solutions. 

 Parabolas can model many real life situations, such as the height above ground, of an object thrown upward, after some period of time. The vertex of the parabola can provide us with information, such as the maximum height that object, thrown upwards, can reach. For this reason we want to be able to find the coordinates of the vertex. 

 For any parabola,Ax2+Bx+C,the  x -coordinate of the vertex is given by  -B/(2A) . In our case the  x coordinate is  -41.0000  

 Plugging into the parabola formula  -41.0000  for  x  we can calculate the  y -coordinate : 

  y = 1.0 * -41.00 * -41.00 + 82.0 * -41.00 + 81.0 

or   y = -1600.000

Parabola, Graphing Vertex and X-Intercepts :

Root plot for :  y = x2+82x+81

Axis of Symmetry (dashed)  {x}={-41.00} 

Vertex at  {x,y} = {-41.00,-1600.00}  

 x -Intercepts (Roots) :

Root 1 at  {x,y} = {-81.00, 0.00} 

Root 2 at  {x,y} = {-1.00, 0.00} 

Solve Quadratic Equation by Completing The Square

 3.2     Solving   x2+82x+81 = 0 by Completing The Square .

 Subtract  81  from both side of the equation :

   x2+82x = -81

Now the clever bit: Take the coefficient of  x , which is  82 , divide by two, giving  41 , and finally square it giving  1681 

Add  1681  to both sides of the equation :

  On the right hand side we have :

   -81  +  1681    or,  (-81/1)+(1681/1) 

  The common denominator of the two fractions is  1   Adding  (-81/1)+(1681/1)  gives  1600/1 

  So adding to both sides we finally get :

   x2+82x+1681 = 1600

Adding  1681  has completed the left hand side into a perfect square :

   x2+82x+1681  =

   (x+41) • (x+41)  =

  (x+41)2 

Things which are equal to the same thing are also equal to one another. Since

   x2+82x+1681 = 1600 and

   x2+82x+1681 = (x+41)2 

then, according to the law of transitivity,

   (x+41)2 = 1600

We'll refer to this Equation as  Eq. #3.2.1  

The Square Root Principle says that When two things are equal, their square roots are equal.

Note that the square root of

   (x+41)2   is

   (x+41)2/2 =

  (x+41)1 =

   x+41

Now, applying the Square Root Principle to  Eq. #3.2.1  we get:

   x+41 = √ 1600 

Subtract  41  from both sides to obtain:

   x = -41 + √ 1600 

Since a square root has two values, one positive and the other negative

   x2 + 82x + 81 = 0

   has two solutions:

  x = -41 + √ 1600 

   or

  x = -41 - √ 1600 

Solve Quadratic Equation using the Quadratic Formula

 3.3     Solving    x2+82x+81 = 0 by the Quadratic Formula .

 According to the Quadratic Formula,  x  , the solution for   Ax2+Bx+C  = 0  , where  A, B  and  C  are numbers, often called coefficients, is given by :

                                     

            - B  ±  √ B2-4AC

  x =   ————————

                      2A 

  In our case,  A   =     1

                      B   =    82

                      C   =   81 

Accordingly,  B2  -  4AC   =

                     6724 - 324 =

                     6400

Applying the quadratic formula :

               -82 ± √ 6400 

   x  =    ———————

                        2

Can  √ 6400 be simplified ?

Yes!   The prime factorization of  6400   is

   2•2•2•2•2•2•2•2•5•5  

To be able to remove something from under the radical, there have to be  2  instances of it (because we are taking a square i.e. second root).

√ 6400   =  √ 2•2•2•2•2•2•2•2•5•5   =2•2•2•2•5•√ 1   =

                ±  80 • √ 1   =

                ±  80 

So now we are looking at:

           x  =  ( -82 ± 80) / 2

Two real solutions:

x =(-82+√6400)/2=-41+40= -1.000 

or:

x =(-82-√6400)/2=-41-40= -81.000 

Two solutions were found : x = -1 x = -81


desaishazi72: thanks you for helping me
daivikmhatre89: Np
desaishazi72: hmm
Similar questions