Math, asked by noel84, 10 months ago

x=9+4 root 5 find x2+1/x2​

Answers

Answered by Brâiñlynêha
1

\huge\mathbb{\underline{\red{SOLUTION:-}}}

we have to find the value of

\sf\implies  x{}^{2}+\frac{1}{x{}^{2}}

\huge\mathbb{\purple{GIVEN:-}}

\sf x= 9+4\sqrt{5}

1st find the value of \sf \frac{1}{x}

\sf\implies \frac{1}{9+4\sqrt{5}}\\ \\ \sf\implies \frac{1}{9+4\sqrt{5}}\times \frac{9-4\sqrt{5}}{9-4\sqrt{5}}\\ \\ \sf\implies \frac{9-4\sqrt{5}}{(9){}^{2}-(4\sqrt{5}){}^{2}}\\ \\ \sf\implies \frac{9-4\sqrt{5}}{81-80}\\ \\ \sf\implies \frac{9-4\sqrt{5}}{1}\\ \\ \sf\implies 9-4\sqrt{5}

The value of \sf\frac{1}{x}= 9-4\sqrt{5}

Find The value of \sf x+\frac{1}{x}

\sf\implies 9+4\sqrt{5}+9-4\sqrt{5}\\ \\ \sf\implies 9+9+4\sqrt{5}-4\sqrt{5}\\ \\ \sf\implies 18

The value of \sf x+\frac{1}{x}=18

Have to find:-

\sf\implies x{}^{2}+\frac{1}{x{}^{2}}

\sf\implies (x+\frac{1}{x}){}^{2}=x{}^{2}+\frac{1}{x{}^{2}}+2

\sf\implies x{}^{2}+\frac{1}{x{}^{2}}+2=18\\ \\ \sf\implies x{}^{2}+\frac{1}{x{}^{2}}=18-2\\ \\ \sf\implies x{}^{2}+\frac{1}{x{}^{2}}=16

The value of :-

\underline{\sf x+\frac{1}{x{}^{2}}=16}

Answered by 3CHANDNI339
2

▀▄ [_Hɪ Mᴀᴛᴇ_]▄▀

⭕Your ✍️ answer is in the ✨Attachment..❤☺

⭐Hope it helps ⭐

Attachments:
Similar questions