((x^(a+b) )^2 (x^(b+c) )^2 (x^(c+a) )^2)/(x^a x^b x^c )^4 =1 PROVE THIS QUESTION FAST!!!!! Correct answered would be marked as brainliest !!!!!!
Answers
Answer:
Given: (xa/xb)^1/ab( xb /xc)^1/bc(xc/xa)1/ca
We need to prove the gives equation
LHS=(xa/xb)^1/ab( xb /xc)^1/bc(xc/xa)1/ca
Using laws of exponents
= (xa/xb)1/ab( xb /xc)1/bc(xc/xa)1/ca
= x(a-b)/ab * x^(b-c)/bc * x^(c-a)/ca
= x[(a-b)/ab + (b-c)/bc + (c-a)/ca]
= x[c(a-b)/abc + a(b-c)/abc + b(c-a)/abc ]
= x { [c(a-b)+ a(b-c) + b(c-a) ]/abc }
= x ( ac – bc + ab – ac + bc – ab ] /abc
= x 0/abc
= x0
= 1
= RHS
Hence proved
Answer:
We have,
(x−a)(x−c)+2(x−b)(x−d)=0
⇒3x
2
−(a+c+2b+2d)x+(ac+2bd)=0
Discriminant
={(a+2d)+(c+2b)}
2
−4.3(ac+2bd)
={(a+2d)+(c+2b)}
2
−12(ac+2bd)
={(a+2d)−(c+2b)}
2
−4(a+2d)(c+2b)−12(ac+2bd)
={(a+2d)−(c+2b)}
2
+4ac+8ab+8cd+16bd−12ac−24bd
={(a+2d)−(c+2b)}
2
+8(ab+cd−ac−bd)
={(a+2d)−(c+2b)}2+8(c−b)(d−a)>0
∵a<b<c<d⇒c−b>0and d−a>0
∴ The roots of the given equation are real and distinct