(x^a-b)^a+b(x^b-c)b+c(x^c-a)c+a=1
Answers
Answered by
51
- Here we go through L.H.S
⟹(x^a-b)^a+b×(x^b-c)^b+c×(x^c-a)^c+a
⟹(x)^a²-b²×(x)^b²-c²+(x)^c²-a²
⟹(x)^a²-b²+b²-c²+c²-a²
⟹(x)^0=>X=1
- using above identity
- a²-b²=(a+b)(a-b)
Answered by
28
______________________
Solving the Left Hand Side-
➩(x^a-b)^a+b×(x^b-c)^b+c×(x^c-a)^c+a=1
➩(x)^a²-b²×(x)^b²-c²+(x)^c²-a²=1
➩(x)^a²-b²+b²-c²+c²-a²= 1
➩(x)^0=1
➩x=1 = 1
Hence,
Proved
______________________
Similar questions