Math, asked by archusanju1981, 9 months ago

(x^a-b)^a+b(x^b-c)b+c(x^c-a)c+a=1​

Answers

Answered by mddilshad11ab
51

\huge{\underline{\purple{\rm{Solution:}}}}

  • Here we go through L.H.S

⟹(x^a-b)^a+b×(x^b-c)^b+c×(x^c-a)^c+a

⟹(x)^a²-b²×(x)^b²-c²+(x)^c²-a²

⟹(x)^a²-b²+b²-c²+c²-a²

⟹(x)^0=>X=1

  • using above identity
  • a²-b²=(a+b)(a-b)

\bold\orange{\boxed{Answer\:x=1}}

Answered by Anonymous
28

\huge\tt{SOLUTION:}

______________________

Solving the Left Hand Side-

➩(x^a-b)^a+b×(x^b-c)^b+c×(x^c-a)^c+a=1

➩(x)^a²-b²×(x)^b²-c²+(x)^c²-a²=1

➩(x)^a²-b²+b²-c²+c²-a²= 1

➩(x)^0=1

➩x=1 = 1

\tt{L.H.S=R.HS}

Hence,

Proved

______________________

Similar questions