Math, asked by uyaseen1999, 1 year ago

x=a cos^(3)t,y=a sin^(3)t

dy/dx = ?

Answers

Answered by rishu6845
4

Answer:

plzzz give me brainliest ans and plzzzz follow me

Attachments:
Answered by Anonymous
10

\underline{\large{\sf Answer:}}

\sf x = a cos^3t,\sf y = a sin^3t

here we have given, parameter (t) so first differentiate the functions,

\sf x = a cos^3tand \sf y = a sin^3t with respect to t

therefore,

x = a cos³t , Differentiate wrt t

\implies \sf \frac{dx}{dt}=\frac{d}{dt}(a cos^2t )

\implies \sf a 3cos^2t (\frac{d}{dt}(cost))

\implies \sf (3acos^2t )(-sint)

\implies \sf -(3a cos^2t)(sin t)

Now ,

y = a sin³t , Differentiate wrt t

\implies \sf \frac{dy}{dt}=\frac{d}{dt}(a sin^3t)

\implies \sf 3a sin^2t (\frac{d}{dt}(sint))

\implies \sf 3a sin^2t (cost)

{we know, \sf \frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}} }

Therefore,

\implies \sf \frac{dy}{dx}=\frac{3a sin^2t (cost)}{-(3a cos^2t)(sin t)}

\implies -(\sf tan^2t \times cot t)

\implies \sf -tan^2t (\frac{1}{tan t})

\implies {\boxed{\large{\sf -tant}}}

Similar questions