Math, asked by ashmitadiadey, 7 months ago

x = a cos theta + b sin theta, y = b cos theta - a sin theta. eliminate theta from the equation.

please don't give unnecessary answers. ​

Answers

Answered by JBJ919
0

Answer:

⭐⭐⭐⭐⭐ ANSWER ⭐⭐⭐⭐⭐

==================================

❄❄❄❄ EXPLANATION ❄❄❄❄

➡ In first numerical and also in second numerical, we had find the values of sec theta and tan theta [IN QUESTION 1], cos theta and sin theta [IN QUESTION 2].

➡ Then we apply trigonometric formulas immediately.

➡ In first numerical, sec²theta-tan²theta=1.

➡ In second numerical, sin²theta+cos²theta=1.

➡ Thus, the thetas got eliminated and our answer becomes ready.

==================================

⭐⭐⭐ ALWAYS BE BRAINLY ⭐⭐⭐

if help needed refer to https://brainly.in/question/7274717

Step-by-step explanation:

Answered by aryan073
11

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \:  \:    \large \green {\bold{ \underline{ \underline{ \star answer : }}}}

 \:    \bullet\bold{ \underline{x = a cos \theta \:  + bsin \theta \: \: and  \:  \: \: y = bcos \theta \:  - asin \theta}} \:   \\  \underline{ \bf{estimate \theta \: from \: the \: equation}}

 \:  \:  \large \blue {\bold{ \underline{ \underline{given \: equation : }}}}

 \:   \bullet \bold{x = acos \theta \:  + bsin \theta..........equation(1)}

 \:  \bullet  \bold{x = bcos \theta - asin \theta........equation(2)}

 \:  \:  \star \red {\bold{ \underline{ \underline{ \: squaring \: both \: equation \: (1) \: and \: (2)}}}}

 \:  \bullet \bold{ {x}^{2}  = ( {acos \theta + bsin \theta)}^{2} }

 \:  \\  \to \bold{ {x}^{2}  =  {a}^{2} {cos}^{2}  \theta +  {b}^{2}  {sin}^{2}  \theta + 2absin \theta cos \theta}...(1)

 \:  \bullet \bold{ {y}^{2}  =  {(bcos \theta - asin \theta)}^{2} }

  \\ \to \bold{ {y}^{2}  =  {b}^{2} {cos}^{2}  \theta +  {a}^{2} {sin}^{2} \theta - 2abcos \theta sin \theta} ....(2)

 \:  \star \large  \blue{ \bold{ \underline{ \underline{adding \: both \: equation \: (1) \: and \: (2)}}}}

 \:   \tt : \implies \: {x}^{2}  +  {y}^{2}  =  {a}^{2}  {cos}^{2}  \theta +  {b}^{2} {sin}^{2}  \theta + 2abcos \theta sin \theta +  {b}^{2}  {cos}^{2}  \theta +  {a}^{2}  {sin}^{2}  \theta - 2absin \theta cos \theta

 \tt : \implies {x}^{2}  +  {y}^{2} =   {a}^{2} ( {sin}^{2}  \theta +  {cos}^{2}  \theta) +  {b}^{2} ( {sin}^{2} \theta +  {cos}^{2}  \theta)  + 2absin \theta  \: cos \theta - 2absin \theta \: cos \theta

 \tt :  \implies  {x}^{2}  +  {y}^{2}   = {a}^{2} ( {sin}^{2} \theta +  {cos}^{2}   \theta) +  {b}^{2} ( {sin}^{2}  \theta +  {cos}^{2}  \theta) +    \cancel {2abcos \theta  \: sin \theta  - 2acos \theta \: sin \theta}

 \:  \tt :  \implies \:  {x}^{2}  +  {y}^{2}  =  {a}^{2} (1) +  {b}^{2} (1)

 \:  \tt :  \implies {x}^{2}  +  {y}^{2}  =  {a}^{2}  +  {b}^{2}

 \:   \bigstar \: \green{\bold {{ \underline{ \underline{ {x}^{2}  +   {y}^{2}  =  {a}^{2}  +  {b}^{2}  \: is \: the \: answer}}}}}

Similar questions