Math, asked by thakurishani262, 8 months ago

x/a cos theta + y/b sin theta =1 find the value of x^2/a^2 + y^2/b^2​

Answers

Answered by BrainlyIAS
4

Correct Question :

If x/a cosθ +y/b sinθ =1 and x/a sinθ- y/bcosθ=1 , then prove that x²/a²+y² /b² =2

Given :

\sf \dfrac{xcos\theta}{a}+\dfrac{ysin\theta}{b}=1...(1)\\\\\sf \dfrac{xsin\theta}{a}-\dfrac{ycos\theta}{b}=1...(2)

To Find :

\sf Value\ of\  \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}

Solution :

Squaring (1) on both sides ,

\\ \sf \bigg(\dfrac{xcos\theta}{a}+\dfrac{ysin\theta}{b}\bigg)^2=(1)^2\\

\\ \to \sf \dfrac{x^2cos^2\theta}{a^2}+\dfrac{y^2sin^2\theta}{b^2}+\dfrac{2xysin \theta cos \theta}{ab}=1...(3) \\

Squaring (2) on both sides ,

\\ \sf \bigg(\dfrac{xsin\theta}{a}-\dfrac{ycos\theta}{b}\bigg)^2=(1)^2 \\

\\ \to \sf \dfrac{x^2sin^2\theta}{a^2}+\dfrac{y^2cos^2\theta}{b^2}-\dfrac{2xysin\theta cos\theta}{ab}=1...(4) \\

Add (3) and (4) ,

\\ \to \sf \dfrac{x^2cos^2\theta}{a^2}+\dfrac{y^2sin^2\theta}{b^2}+\dfrac{2xysin \theta cos \theta}{ab}+\dfrac{x^2sin^2\theta}{a^2}+\dfrac{y^2cos^2\theta}{b^2}-\dfrac{2xysin \theta cos \theta}{ab}=1+1 \\

\\ \to \sf \dfrac{x^2}{a^2}(sin^2\theta+cos^2\theta)+\dfrac{y^2}{b^2}(sin^2\theta+cos^2\theta)=2\\

Remember Trigonometric Identity ,

→   sin²θ + cos²θ = 1   ←

\\ \to \sf \dfrac{x^2}{a^2}(1)+\dfrac{y^2}{b^2}(1)=2 \\

\\ \sf \pink{\leadsto  \dfrac{x^2}{a^2}+\dfrac{x^2}{b^2}=2}\ \; \bigstar \\

Similar questions