Math, asked by hii5769, 1 year ago

x-a) is a factor of x 3 – mx 2

-2nax + na 2

, then prove that a= m +n and a≠0

Answers

Answered by rakeshmohata
12
Hope u like my process
=====================
Let f(x) = x³ - mx² - 2nax +na²

Now..if (x-a) is a factor of x. Then,

f(x) = 0, when x= a

So,
 =  >  {x}^{3}  - m {x}^{2}  - 2nax + n {a}^{2}  = f(x) \\  \\ or. \:  \:  {(a)}^{3}  - m {(a)}^{2}  - 2na \times a + n {a}^{2}  = 0 \\  \\ or. \:  \:  {a}^{3 }  - m {a}^{2}  - 2n {a}^{2}  + n {a}^{2}  = 0 \\  \\ or. \:  \:  {a}^{2} (a - m - n) = 0 \\  \\ or. \:  \: a - m - n = 0 \\  < since \:  \:  \: a \:  \: not \: equals  \:  \: 0 >  \\ ........................................... \\  \\ or. \:  \: a = m + n.... < proved > ...
_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_
Hope this is ur required answer

Proud to help you
Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Solution-} \\

Let p(x) = x³ - mx² - 2nax + na².

If (x - a) is a factor of p(x), then p(a) = 0

Now, p(a) = a³ - m(a)² - 2na(a) + na² = 0

⇒a³ - a²m - 2a²n + na² = 0

⇒. a³ - a²m - a²n = 0

⇒ a²(a - m - n) = 0

Since, a ≠ 0

∴ a - m - n = 0

⇒ a = m + n

Hence, proved.

Similar questions