x-a) is a factor of x 3 – mx 2
-2nax + na 2
, then prove that a= m +n and a≠0
Answers
Answered by
12
Hope u like my process
=====================
Let f(x) = x³ - mx² - 2nax +na²
Now..if (x-a) is a factor of x. Then,
f(x) = 0, when x= a
So,
_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_
Hope this is ur required answer
Proud to help you
=====================
Let f(x) = x³ - mx² - 2nax +na²
Now..if (x-a) is a factor of x. Then,
f(x) = 0, when x= a
So,
_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_
Hope this is ur required answer
Proud to help you
Answered by
1
Step-by-step explanation:
Let p(x) = x³ - mx² - 2nax + na².
If (x - a) is a factor of p(x), then p(a) = 0
Now, p(a) = a³ - m(a)² - 2na(a) + na² = 0
⇒a³ - a²m - 2a²n + na² = 0
⇒. a³ - a²m - a²n = 0
⇒ a²(a - m - n) = 0
Since, a ≠ 0
∴ a - m - n = 0
⇒ a = m + n
Hence, proved.
Similar questions