Math, asked by ronyadhikary721148, 7 months ago

x = a(sino - cos) y = b(sino + cose) 30,
x2b2 + y2a2 = ?​

Answers

Answered by SujalSirimilla
5

GIVEN:

  • x=a(sinA-cosA)
  • y=b(sinA+cosA)

\LARGE{\bf{\underline{\underline{TO:FIND:-}}}}

  • x²b²+y²a²

\LARGE{\bf{\underline{\underline{SOLUTION:-}}}}

Now,

\to \sf x^2b^2+y^2a^2

▣ Substitute the values.

\sf [a(sinA-cosA)]^2 \cdot b^2+[b(sinA+cosA)]^2 \cdot a^2

▣ Further simplify:

\sf a^2(sin^2A+cos^2A-2sinAcosA) \cdot b^2+b^2(sin^2A+cos^2A+2sinAcosA) \cdot a^2

\to \sf a^2 b^2(sin^2A+cos^2A-2sinAcosA) +a^2b^2(sin^2A+cos^2A+2sinAcosA)

▣ Take a²b² common.

\to \sf a^2 b^2(sin^2A+cos^2A-2sinAcosA +sin^2A+cos^2A+2sinAcosA)

▣ We know that sin²A+cos²A=1. Further simplifying:

\to \sf a^2 b^2(1+1)

\leadsto \boxed{\sf{\red{2(a^2b^2)}}}

∴x²b²+y²a²=2(a²b²)

Similar questions