Math, asked by rajukumar405350, 1 year ago

X=a[t+1/t], y=a[t-1/t] where "a" is constant than prove that dy/dx= x/y

Answers

Answered by Anonymous
17
[tex] \frac{dx}{dt} = a(1- \frac{1}{ t^{2} } ) \\ \frac{dy}{dt} = a(1+ \frac{1}{ t^{2} } ) \\ \frac{dy}{dx} = (\frac{t ^{2}+ 1}{ t^{2}-1} ) = \frac{x}{y} [/tex]
Answered by ashishks1912
3

\frac{dy}{dx}=\frac{x}{y} is proved for given values of x and y where "a" is a constant.

Step-by-step explanation:

  • Given that x=a[t+\frac{1}{t}] and y=a[t-\frac{1}{t}]

where "a" is constant.

  • To find prove that \frac{dy}{dx}=\frac{x}{y}
  • That is to prove LHS=RHS
  • Let us take LHS \frac{dy}{dx}
  • The above differentiation can be written as
  • \frac{dy}{dx}=\frac{dy}{dt}\times \frac{dt}{dx}
  • Now find \frac{dy}{dt} from y=a[t-\frac{1}{t}] we get
  • y=a[t-\frac{1}{t}]
  • Differentiating with respect to "t" we get
  • \frac{dy}{dt}=a[1-(-\frac{1}{t^2})]
  • =a[1+\frac{1}{t^2}]
  • =a[\frac{t^2+1}{t^2}]
  • Therefore \frac{dy}{dt}=a[\frac{t^2+1}{t^2}]
  • Similarly for x x=a[t+\frac{1}{t}]
  • Differentiating with respect to "t" we get
  • \frac{dx}{dt}=a[1+(-\frac{1}{t^2})]
  • =a[1-\frac{1}{t^2}]
  • =a[\frac{t^2-1}{t^2}]
  • Therefore \frac{dx}{dt}=a[\frac{t^2-1}{t^2}]
  • Now \frac{dy}{dx}=\frac{dy}{dt}\times \frac{dt}{dx} becomes
  • \frac{dy}{dx}=a[\frac{t^2+1}{t^2}]\times \frac{1}{a[\frac{t^2-1}{t^2}]}
  • =a[\frac{t^2+1}{t^2}]\times \frac{t^2}{a[t^2-1]}
  • =\frac{t^2+1}{t^2-1}
  • Therefore  \frac{dy}{dx}=\frac{t^2+1}{t^2-1}=LHS
  • Now taking RHS \frac{x}{y}
  • \frac{x}{y}=\frac{a[t+\frac{1}{t}]}{a[t-\frac{1}{t}]}
  • =a[\frac{t^2+1}{t^2}]\times (\frac{t^2}{a(t^2-1)})
  • =\frac{t^2+1}{t^2-1}
  • Therefore \frac{x}{y}=\frac{t^2+1}{t^2-1}=RHS

Therefore LHS=RHS

\frac{dy}{dx}=\frac{x}{y}

Hence proved

Similar questions