Math, asked by samymsh045, 1 year ago

X=a(t-sint), y=a(1+cost), prove that d2y/dx2 = (1/4a)cosec^4(t/2)

Answers

Answered by MaheswariS
15

Answer:

\frac{d^2y}{dx^2}=\frac{1}{4a}cosec^4\frac{t}{2}}

Step-by-step explanation:

Formula used:

cosA=1-2sin^2\frac{A}{2}

sinA=2\:sin\frac{A}{2}\:cos\frac{A}{2}

x=a(t-sint)

\frac{dx}{dt}=a(1-cost)

\frac{dx}{dt}=a(2\:sin^2\frac{t}{2})

\frac{dx}{dt}=2a\:sin^2\frac{t}{2}

y=a(1+cost)

\frac{dy}{dt}=a(-sint)

\frac{dy}{dt}=-asint

\frac{dy}{dt}=-2a\:sin\frac{t}{2}\:cos\frac{t}{2}

Now,

\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}

\frac{dy}{dx}=\frac{-2a\:sin\frac{t}{2}\:cos\frac{t}{2}}{2a\:sin^2\frac{t}{2}}

\frac{dy}{dx}=\frac{-cos\frac{t}{2}}{sin\frac{t}{2}}

\frac{dy}{dx}=-cot\frac{t}{2}}

Differentiate with respect to x

\frac{d^2y}{dx^2}=\frac{1}{2}cosec^2\frac{t}{2}}\:\frac{dt}{dx}

\frac{d^2y}{dx^2}=\frac{1}{2}cosec^2\frac{t}{2}}\:\frac{1}{\frac{dx}{dt}}

\frac{d^2y}{dx^2}=\frac{1}{2}cosec^2\frac{t}{2}}\:\frac{1}{2a\:sin^2\frac{t}{2}}

\frac{d^2y}{dx^2}=\frac{1}{2}cosec^4\frac{t}{2}}\:\frac{1}{2a}

\frac{d^2y}{dx^2}=\frac{1}{4a}cosec^4\frac{t}{2}}

Similar questions