x = a tan^2 A + b sec^2 A then x+a/x-b =
Answers
Answered by
7
Answer:-
Given:
x = a tan² A + b sec² A
→ x + a = a tan² A + b sec² A + a
→ x + a = a (1 + tan² A) + b sec² A
We know that,
sec² A - tan² A = 1
→ sec² A = (1 + tan² A)
→ tan² A = sec² A - 1
Hence,
→ x + a = a sec² A + b sec² A
→ x + a = sec² A(a + b)
→ x - b = a tan² A + b sec² A - b
→ x - b = a tan² A + b(Sec² A - 1)
Putting the value of "sec² A - 1 " as tan² A we get,
→ x - b = a tan² A + b tan² A
→ x - b = tan² A(a + b)
Hence,
(x + a)/(x - b) = [sec² A(a + b)]/[tan² A(a + b)]
→ (x + a)/(x - b) = Sec² A/tan² A
Putting the values of sec² A = 1/Cos² A and tan² A = Sin² A/Cos² A we get,
→ (x + a)/(x - b) = (1/Cos² A)/(Sin² A /Cos² A)
→ (x + a)/(x - b) = 1/Cos² A × Cos² A/Sin² A
→ (x + a)/(x - b) = 1/Sin² A
Putting 1/Sin² A = Cosec² A in RHS we get,
→ (x + a)/(x - b) = Cosec² A
Similar questions
Math,
4 months ago
CBSE BOARD X,
4 months ago
Computer Science,
4 months ago
Social Sciences,
8 months ago
Social Sciences,
8 months ago
Math,
11 months ago
Science,
11 months ago
Chemistry,
11 months ago