Math, asked by pranavrajkaravpattq1, 7 months ago

x = a tan^2 alpha + b sec^2 alpha
then x+a/x-b = ​

Attachments:

Answers

Answered by rajeevr06
4

Answer:

x + a = a + a \: tan {}^{2}  \alpha  + b \: sec {}^{2}  \alpha  = a(1 +  {tan}^{2}  \alpha ) + b \: sec {}^{2}  \alpha  = a \: sec {}^{2}  \alpha  + b \: sec {}^{2}  \alpha  = (a + b) \: sec {}^{2}  \alpha

Now,

x - b = a \:  {tan}^{2}  \alpha  + b \:  {sec}^{2}  \alpha  - b = a \:  {tan}^{2}  \alpha + b( {sec}^{2}  \alpha  - 1) = a \:  {tan}^{2}  \alpha + b \:  {tan}^{2}  \alpha = (a + b) \:  {tan}^{2}  \alpha

so,

 \frac{x + a}{x - b}  =  \frac{(a + b) {sec}^{2}  \alpha }{(a + b) {tan}^{2} \alpha  }  =  \frac{1}{ {cos}^{2}  \alpha }  \times  \frac{ {cos}^{2} \alpha  }{ {sin}^{2} \alpha  }  =  {cosec}^{2}  \alpha  \:  \: ans.

2nd option correct.

Similar questions