x + a )(x + b) = *
2 points
a² + b² + 2ab
x² + (a + b) x + ab
(a + b) (a - b)
Answers
Answered by
0
Answer:
The answer is Option 2nd) x²+(a+b)X+ab
Step-by-step explanation:
It is an algebraic Identity.
Hope it will help you.
Answered by
0
Her user
Here your answer
(a - b) * x + (a + b) * y = a ^ 2 - 2ab - b ^ 2 ............1) (a+b)(x+y)=a^ 2 +b^ 2 ....... (a + b) * x + (a + b) * y = a ^ 2 + b ^ 2 Subtracting 2) from 1), we get ax - bx - ax - bx = - 2b ^ 2 - 2ab : -2bx=-2b^ 2 -2ab :: x = a + b Substituting the value of x in 2) , we get from 2)(a+b)x+(a+b)y=a^ 2 +b^ 2 . (a + b) * y = a ^ 2 + b ^ 2 - (a + b) * x y = (a ^ 2 + b ^ 2 - (a + b) * x)/(a + b) y= a^ 2 +b^ 2 -(a+b)(a+b) (a+b) .......x=(a+b) After solving therefore y= -2ab (a+b) ....2)
Here your answer
(a - b) * x + (a + b) * y = a ^ 2 - 2ab - b ^ 2 ............1) (a+b)(x+y)=a^ 2 +b^ 2 ....... (a + b) * x + (a + b) * y = a ^ 2 + b ^ 2 Subtracting 2) from 1), we get ax - bx - ax - bx = - 2b ^ 2 - 2ab : -2bx=-2b^ 2 -2ab :: x = a + b Substituting the value of x in 2) , we get from 2)(a+b)x+(a+b)y=a^ 2 +b^ 2 . (a + b) * y = a ^ 2 + b ^ 2 - (a + b) * x y = (a ^ 2 + b ^ 2 - (a + b) * x)/(a + b) y= a^ 2 +b^ 2 -(a+b)(a+b) (a+b) .......x=(a+b) After solving therefore y= -2ab (a+b) ....2)
Similar questions