Math, asked by asomgaments, 8 months ago

(x^a/x^b)^a^2+ab+b^2

Answers

Answered by layagiddi
1

Answer:

please mark me as brilliant.

Step-by-step explanation:

(\frac{x^{a}}{x^{b}})^{a^{2}+ab+b^{2}}(

x

b

x

a

)

a

2

+ab+b

2

\times (\frac{x^{b}}{x^{c}})^{b^{2}+bc+c^{2}}×(

x

c

x

b

)

b

2

+bc+c

2

\times (\frac{x^{c}}{x^{a}})^{c^{2}+ca+a^{2}}×(

x

a

x

c

)

c

2

+ca+a

2

=(x^{a-b})^{(a^{2}+ab+b^{2})} \times(x

a−b

)

(a

2

+ab+b

2

)

×

(x^{b-c})^{(b^{2}+bc+c^{2})}(x

b−c

)

(b

2

+bc+c

2

)

\times (x^{c-a})^{(c^{2}+ca+a^{2})}×(x

c−a

)

(c

2

+ca+a

2

)

=x^{(a-b)(a^{2}+ab+b^{2})}=x

(a−b)(a

2

+ab+b

2

)

\times x^{(b-c)(b^{2}+bc+c^{2})}×x

(b−c)(b

2

+bc+c

2

)

\times x^{(c-a)(c^{2}+ca+a^{2})}×x

(c−a)(c

2

+ca+a

2

)

=x^{a^{3}-b^{3}}\times x^{b^{3}-c^{3}}\times x^{c^{3}-a^{3}}=x

a

3

−b

3

×x

b

3

−c

3

×x

c

3

−a

3

=x^{a^{3}-b^{3}+b^{3}-c^{3}+c^{3}-a^{3}}=x

a

3

−b

3

+b

3

−c

3

+c

3

−a

3

=x^{0}=x

0

= 1=1

Therefore,

(\frac{x^{a}}{x^{b}})^{a^{2}+ab+b^{2}}(

x

b

x

a

)

a

2

+ab+b

2

\times (\frac{x^{b}}{x^{c}})^{b^{2}+bc+c^{2}} \times (\frac{x^{c}}{x^{a}})^{c^{2}+ca+a^{2}}×(

x

c

x

b

)

b

2

+bc+c

2

×(

x

a

x

c

)

c

2

+ca+a

2

= 1

Attachments:
Similar questions