Math, asked by Anonymous, 1 month ago

(x^a/x^b)^(a+b-c) * (x^b/x^c)^(b+c-a) * (x^c/x^a)^(c+a-b) = 1 . Prove the Sum answer it​

Answers

Answered by sanchghosh9
1

Answer:

the math problem is so easy

Attachments:
Answered by ramkrishnanj10
1

Step-by-step explanation:

 {\frac{ {x}^{a} }{ {x}^{b} }}^{(a + b - c)}  \times  { \frac{ {x}^{b} }{ {x}^{c} } }^{(b + c  -  a)}  \times   { \frac{ {x}^{c} }{ {x}^{a} } }^{(c + a - b)}  \\  =  {x}^{ {(a - b)}^{ \:{(a + b - c ) }} }  \times  {x}^{ {(b - c)}^{{(b + c - a)}} }  \times  {x}^{ {(c - a)}^{c + a - b} }  \\   =  {x}^{(a - b)(a + b - c) +(b - c)(b + c - a) + (c - a)(c + a - b)}  \\ =  {x}^{ ({a}^{2}  + ab - ac - ab - {b}^{2} + bc +  {b}^{2} + bc - ab - bc -  {c}^{2} + ac +  {c}^{2}  +ac - bc - ac -  {a}^{2} + ab )  }  \\  =   {x}^{( {a}^{2}  -  {a}^{2} +  {b}^{2} -  {b}^{2} +  {c}^{2} -  {c}^{2}   + ab + ab - ab - ab + bc + bc - bc  - bc + ac  + ac - ac - ac  ) }  \\  =  {x}^{0}  = 1

Similar questions