Math, asked by deepakkumarshukla05, 9 months ago

(x^a/x^b)^c × (x^b/x^c)^a × (x^c/x^a) ^a

Answers

Answered by BrainlyTornado
2

CORRECT QUESTION:

Simplify:

\left( \dfrac{x^a}{x^b} \right)^c  \times  \left(\dfrac{x^b}{x^c}\right)^a \times  \left(\dfrac{x^c}{x^a}\right) ^b

ANSWER:

 \left( \dfrac{x^a}{x^b} \right)^c  \times  \left(\dfrac{x^b}{x^c}\right)^a \times  \left(\dfrac{x^c}{x^a}\right) ^b = 1

GIVEN:

\left( \dfrac{x^a}{x^b} \right)^c  \times  \left(\dfrac{x^b}{x^c}\right)^a \times  \left(\dfrac{x^c}{x^a}\right) ^b

TO SIMPLIFY:

\left( \dfrac{x^a}{x^b} \right)^c  \times  \left(\dfrac{x^b}{x^c}\right)^a \times  \left(\dfrac{x^c}{x^a}\right) ^b

EXPLANATION:

\left( \dfrac{x^a}{x^b} \right)^c  \times  \left(\dfrac{x^b}{x^c}\right)^a \times  \left(\dfrac{x^c}{x^a}\right) ^b

\left( \dfrac{x^{ac}}{x^{bc}} \right) \times  \left(\dfrac{x^{ab}}{x^{ac}}\right)\times  \left(\dfrac{x^{bc}}{x^{ab}}\right)

\left( \dfrac{x^{ac} \times x^{ab} \times x^{bc}}{x^{bc} \times x^{ac} \times x^{ab}} \right)

BOTH NUMERATOR AND DENOMINATOR ARE SAME. HENCE

\left( \dfrac{x^{ac} \times x^{ab} \times x^{bc}}{x^{bc} \times x^{ac} \times x^{ab}} \right)  = 1

 \left( \dfrac{x^a}{x^b} \right)^c  \times  \left(\dfrac{x^b}{x^c}\right)^a \times  \left(\dfrac{x^c}{x^a}\right) ^b = 1

SOME FORMULAE:

\left(X^a\right)^n= X^{an}

\left(\dfrac{X^m}{X^n}\right)^n= X^{m-n}

\left({X^m}{X^n}\right)= X^{m+n}

(X^0) = 1

(0^n) = 0

Similar questions