Math, asked by kadianpawan121977, 1 day ago

[(x^a)/(x^b)]^c×[(x^b)/(x^c)]^c×[(x^c)/(x^a)]^b​

Answers

Answered by yogeeshwarantn1971
0

Cherrapunji holds two Guinness world records for receiving the maximum amount of rainfall in a single year, 26,471mm (1,042.2 in) of rainfall between August 1860 and July 1861 and the maximum amount of rainfall in a single month (9,300mm) in July 1861.

Step-by-step explanation:

sorry for spamming your question.

please drop 30 thanks I will return you back.

Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Given-} \\

  \sf{ \bigg( \frac{ {x}^{a} }{ {x}^{b} } \bigg)^{c}  \times\bigg( \frac{ {x}^{b} }{ {x}^{c} } \bigg)^{a}  \times \bigg( \frac{ {x}^{c} }{ {x}^{a} } \bigg)^{b}   } \\

 \bf \underline{To\:find-} \\

\textsf{Simplify the expression and find their value.}\\

 \bf \underline{Solution-} \\

\textsf{Given expression}\\

  \sf{ \bigg( \frac{ {x}^{a} }{ {x}^{b} } \bigg)^{c}  \times\bigg( \frac{ {x}^{b} }{ {x}^{c} } \bigg)^{a}  \times \bigg( \frac{ {x}^{c} }{ {x}^{a} } \bigg)^{b}   } \\

 \sf{\Rightarrow\bigg(x ^{a - b}  \bigg)^{c}  \times\bigg(x ^{b - c}  \bigg)^{a}  \times\bigg(x ^{c - a}  \bigg)^{b}} \\

\sf{\Rightarrow \:  {x}^{ac - bc}  \times  {x}^{ba - ca}  \times  {x}^{cb - ab} } \\

\sf{\Rightarrow \:  {x}^{ \cancel{ac} -  \cancel{bc} +  \cancel{ba} -  \cancel{ca} +  \cancel{cb }-  \cancel{ ab}} } \\

\sf{\Rightarrow \:  {x}^{0}  = 1.} \\

 \bf \underline{Answer-} \\

   \bf{ \underline{{ Hence, the \:  value \:  of :  \: \bigg( \frac{ {x}^{a} }{ {x}^{b} } \bigg)^{c}  \times\bigg( \frac{ {x}^{b} }{ {x}^{c} } \bigg)^{a}  \times \bigg( \frac{ {x}^{c} }{ {x}^{a} } \bigg)^{b}  \: is \:   1.}}} \\

 \bf \underline{More information:-} \\

\textsf{ \: \: \: \: \: \: \:Low of Integral Exponents}\\

For any two real numbers a and b, a, b ≠ 0, and for any two positive integers, m and n

➲ If a be any non - zero rational number, then

a^0 = 1

➲ If a be any non - zero rational number and m,n be integer, then

(a^m)^n = a^mn

➲ If a be any non - zero rational number and m be any positive integer, then

a^-m = 1/a^m

➲ If a/b is a rational number and m is a positive integer, then

(a/b)^m = a^m/b^m

➲ For any Integers m and n and any rational number a, a ≠ 0

a^m × a^n = a^m+n

➲ For any Integers m and n for non - zero rational number a,

a^m ÷ a^n = a^m-n

➲ If a and b are non - zero rational numbers and m is any integer, then

(a+b)^m = a^m × b^m

I hope it's help you...☺

:)

Similar questions