x/a+y/b-2=0
ax-by+(b**2-a**2)
Answers
Answer:
Answer:
x = a, \: y = b
Step-by-step explanation:
Given \: pair \: of \: Linear \\equations:
\frac{x}{a}-\frac{y}{b}=0\\\implies \frac{bx-ay}{ab}=0\\\implies bx-ay = 0 \:---(1)
and\: ax+by=a^{2}+b^{2}\:---(2)
/* multiply equation (1) by b, equation (2) by a, we get
b^{2}x-aby = 0 \:---(3)
a^{2}x+aby=a(a^{2}+b^{2})\:---(4)
/* Add equations (3) and (4),we get
x(a^{2}+b^{2})=a(a^{2}+b^{2})
\implies x = \frac{a(a^{2}+b^{2})}{(a^{2}+b^{2})}
\implies x = a
Put \: x = a \: in \: equation \\(1),\: we \: get
ab-ay = 0
\implies b-y = 0
\implies y = b
Therefore,.
x = a, y=b
Step-by-step explanation:
x/a+y/b-2=0
x/a+y/b=2
(bx+ay)/ab=2
bx+ay=2ab
ay=b(2a-x)
y={b(2a-x)}/a---------1
ax-by+(b**2-a**2)
=ax-b{b(2a-x)}/a+(b**2-a**2)
=ax-2b*2-(bx/a)+b*2-a*2
=ax-b*2-(bx/a)-a*2