Math, asked by agarwalbhavya40, 10 months ago

x/a+y/b-2=0
ax-by+(b**2-a**2)

Answers

Answered by rehankhan79
1

Answer:

Answer:

x = a, \: y = b

Step-by-step explanation:

Given \: pair \: of \: Linear \\equations:

\frac{x}{a}-\frac{y}{b}=0\\\implies \frac{bx-ay}{ab}=0\\\implies bx-ay = 0 \:---(1)

and\: ax+by=a^{2}+b^{2}\:---(2)

/* multiply equation (1) by b, equation (2) by a, we get

b^{2}x-aby = 0 \:---(3)

a^{2}x+aby=a(a^{2}+b^{2})\:---(4)

/* Add equations (3) and (4),we get

x(a^{2}+b^{2})=a(a^{2}+b^{2})

\implies x = \frac{a(a^{2}+b^{2})}{(a^{2}+b^{2})}

\implies x = a

Put \: x = a \: in \: equation \\(1),\: we \: get

ab-ay = 0

\implies b-y = 0

\implies y = b

Therefore,.

x = a, y=b

Answered by guptaaastha788
1

Step-by-step explanation:

x/a+y/b-2=0

x/a+y/b=2

(bx+ay)/ab=2

bx+ay=2ab

ay=b(2a-x)

y={b(2a-x)}/a---------1

ax-by+(b**2-a**2)

=ax-b{b(2a-x)}/a+(b**2-a**2)

=ax-2b*2-(bx/a)+b*2-a*2

=ax-b*2-(bx/a)-a*2

Similar questions