Math, asked by devrathi32, 1 year ago

x/a - y/b =a - b ;ax + by =a3+b3. solve by cross multiplication methods.​

Answers

Answered by MaheswariS
26

Answer:

Solution is

x=a^2

y=b^2

Step-by-step explanation:

Given equations are

\frac{1}{a}x+\frac{(-1)}{b}y-(a-b)=0

ax+by-(a^3+b^3)=0

By cross multiplication rule,

\frac{x}{\frac{(a^3+b^3)}{b}+b(a-b)}=\frac{y}{-a(a-b)+\frac{(a^3+b^3)}{a}}=\frac{1}{\frac{b}{a}+\frac{a}{b}}

\frac{x}{\frac{(a^3+b^3)+b^2(a-b)}{b}}=\frac{y}{\frac{-a^2(a-b)+(a^3+b^3)}{a}}=\frac{1}{\frac{a^2+b^2}{ab}}

\frac{x}{\frac{a^3+b^3+ab^2-b^3}{b}}=\frac{y}{\frac{-a^3+a^2b+a^3+b^3}{a}}=\frac{ab}{a^2+b^2}

\frac{x}{\frac{a^3+ab^2}{b}}=\frac{y}{\frac{a^2b+b^3}{a}}=\frac{ab}{a^2+b^2}

\frac{x}{\frac{a(a^2+b^2)}{b}}=\frac{y}{\frac{(a^2+b^2)b}{a}}=\frac{ab}{a^2+b^2}

\implies\:\frac{x}{\frac{a(a^2+b^2)}{b}}=\frac{ab}{a^2+b^2}

\implies\:\frac{x}{\frac{a}{b}}=\frac{ab}{1}

\implies\:x=\frac{ab*a}{b}

\implies\:x=a^2

\frac{y}{\frac{(a^2+b^2)b}{a}}=\frac{ab}{a^2+b^2}

\implies\:\frac{y}{\frac{b}{a}}=\frac{ab}{1}

\implies\:y=\frac{ab*b}{a}

\implies\:y=b^2

Solution is

x=a^2

y=b^2

Answered by M24ayush
0

this is the answer lmao cd

Attachments:
Similar questions