X/a + Y/b = a+b ;. X/ a^2 + Y/b^2 = 2,a,b≠0
Answers
Answered by
4
Solution :-
Given pair of linear equations :
- x/a + y/b = a + b ---- eq(1)
- x/a² + y/b² = 2 ---- eq(2)
x/a² + y/b² = 2
Multiplying through by 'a'
⇒ x/a + ay/b² = 2a --- eq(3)
Subtracting eq(1) from eq(3)
⇒ x/a + ay/b² - ( x/a + y/b ) = 2a - ( a + b)
⇒ x/a + ay/b² - x/a - y/b = 2a - a - b
⇒ ay/b² - y/b = a - b
Taking LCM
⇒ ( ay - by ) / b² = a - b
⇒ ay - by = b²(a - b)
⇒ y(a - b) = b²(a - b)
⇒ y = b²(a - b) / (a - b)
⇒ y = b²
Substituting y = b² in eq(1)
⇒ x/a + y/b = a + b
⇒ x/a + b²/b = a + b
⇒ x/a + b = a + b
⇒ x/a = a + b - b
⇒ x/a = a
⇒ x = a * a
⇒ x = a²
Therefore the value of x is a² and y is b².
Similar questions