Math, asked by prishalahe, 2 months ago

x/a = y/b ; ax + by = a^2 + b^2 solve by elimination or cross multiplication method​

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given pair of lines are

\rm :\longmapsto\:\dfrac{x}{a}  = \dfrac{y}{b}

can be rewritten as

\rm :\longmapsto\:\dfrac{x}{a} -  \dfrac{y}{b}  = 0

\rm :\longmapsto\:\dfrac{bx - ay}{a} = 0

\rm :\longmapsto\:bx - ay = 0 -  -  - (1)

and

\rm :\longmapsto\:ax + by =  {a}^{2} +  {b}^{2} -  -  - (2)

Now,

Using Cross Multiplication Method

\begin{gathered}\boxed{\begin{array}{c|c|c|c} \bf 2 & \bf 3 & \bf 1& \bf 2\\ \frac{\qquad}{} & \frac{\qquad}{}\frac{\qquad}{} &\frac{\qquad}{} & \frac{\qquad}{} &\\ \sf  - a & \sf 0 & \sf b & \sf  - a\\ \\ \sf b & \sf {a}^{2} + {b}^{2} & \sf a & \sf b\\ \end{array}} \\ \end{gathered}

So,

\rm :\longmapsto\:\dfrac{x}{ - a( {a}^{2} +  {b}^{2}) - 0 }  = \dfrac{y}{0 - b( {a}^{2}  +  {b}^{2})}  = \dfrac{ - 1}{ {b}^{2}+{a}^{2} }

\rm :\longmapsto\:\dfrac{x}{ - a( {a}^{2} +  {b}^{2})}  = \dfrac{y}{- b( {a}^{2}  +  {b}^{2})}  = \dfrac{1}{ - ({b}^{2}+{a}^{2})}

 \red{\rm :\longmapsto\:On \: multiply \: by \:   - ({a}^{2} +  {b}^{2}), \: we \: get}

\rm :\longmapsto\:\dfrac{x}{a}  = \dfrac{y}{b}  = 1

\bf\implies \:x = a \:  \:  \: or \:  \:  \: y = b

Verification :-

Consider Equation (1),

\rm :\longmapsto\:bx - ay = 0

On substituting the values of x and y, we get

\rm :\longmapsto\:ba - ab = 0

\rm :\longmapsto\:0 = 0

Hence, Verified

Consider Equation (2),

\rm :\longmapsto\:ax + by =  {a}^{2} +  {b}^{2}

On substituting the values of x and y, we have

\rm :\longmapsto\:a(a) + b(b) =  {a}^{2} +  {b}^{2}

\rm :\longmapsto\: {a}^{2}  +  {b}^{2}  =  {a}^{2} +  {b}^{2}

Hence, Verified

Similar questions