Math, asked by Anannya7667, 1 year ago

X/a = y/b=z/c=2018 find xy=(a+b)(b+c)(c+a)/abc(x+y)(y+z)(z+x)

Answers

Answered by ihrishi
3

Step-by-step explanation:

Given:

 \frac{x}{a}  =  \frac{y}{b}  =  \frac{z}{c}  = 2018 \\   \\  \therefore \:  \frac{x}{a}  = 2018  \implies \: x = 2018 \: a \\  \\ \:  \:  \:  \:  \:  \frac{y}{b}  = 2018  \implies \: y= 2018 \: b \\  \\  \:  \:  \:  \:  \: \frac{z}{c}  = 2018  \implies \: z = 2018 \: c \\  \\ xy =  \frac{(a + b)(b + c)(c + a)}{abc(x + y)(y + z)(z + x)}  \\   \\ = \frac{(a + b)(b + c)(c + a)}{abc(2018a+ 2018b)(2018b + 2018c)(2018c + 2018a)}  \\   \\ = \frac{(a + b)(b + c)(c + a)}{abc \times 2018(a+ b) \times 2018(b + c) \times 2018(c + a)}  \\   \\  = \frac{(a + b)(b + c)(c + a)}{abc \times (2018)^{3} (a+ b)(b + c)(c + a)}  \\   \\= \frac{1}{abc \times (2018)^{3} }  \\   \\thus \\ \boxed{ xy = \frac{1}{abc \times (2018)^{3} }  }

Similar questions