Math, asked by mazumdersibnath, 1 month ago

x=a(y+z), y=b(z+x), z=c(x+y), a, b, c
is constant then proved 2abc+ ab+ bc+ ca =1​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:x = a(y + z)

\bf\implies \:a = \dfrac{x}{y + z}

Also,

\rm :\longmapsto\:y = b(z + x)

\bf\implies \:b = \dfrac{y}{z + x}

Also,

\rm :\longmapsto\:z = c(x + y)

\bf\implies \:c = \dfrac{z}{x + y}

Now, Consider,

 \red{\rm :\longmapsto\:ab + bc + ca}

\rm \:  =  \: \dfrac{xy}{(y + z)(z + x)}  + \dfrac{yz}{(z + x)(x + y)}  + \dfrac{zx}{(x + y)(y + z)}

\rm \:  =  \: \dfrac{xy(x + y) + yz(y + z) + zx(z + x)}{(x + y)(y + z)(z + x)}

Now,

Consider

 \red{\rm :\longmapsto\:2abc + ab + bc + ca}

On substituting the values, we get

\rm =\dfrac{2xyz}{(x + y)(y + z)(z + x)}  + \dfrac{xy(x + y) + yz(y + z) + zx(z + x)}{(x + y)(y + z)(z + x)}

\rm = \dfrac{2xyz + xy(x + y) + yz(y + z) + zx(z + x)}{(x + y)(y + z)(z + x)}

\rm = \dfrac{2xyz +  {yx}^{2} +  {xy}^{2}   +  {zy}^{2} +  {yz}^{2} +  {zx}^{2} +  {xz}^{2} }{(x + y)(y + z)(z + x)}

on rearranging the terms, we have

\rm \:  = \dfrac{( {yx}^{2}+{yz}^{2} + 2xyz) + ( {xy}^{2} +  {zy}^{2}) + ( {zx}^{2} +  {xz}^{2}}{(x + y)(y + z)(z + x)}

\rm \:  = \dfrac{y({x}^{2}+{z}^{2} + 2xz) +  {y}^{2}(x + z)  +zx(x + z)}{(x + y)(y + z)(z + x)}

\rm \:  = \dfrac{y {(x + z)}^{2}  +  {y}^{2}(x + z)  +zx(x + z)}{(x + y)(y + z)(z + x)}

\rm \:  =  \: \dfrac{\cancel{(z + x)} \:  \: [y(z + x) +  {y}^{2}  + zx]}{(x + y)(y + z) \: \cancel{(z + x)}}

\rm \:  =  \: \dfrac{y(z + x) +  {y}^{2}  + zx}{(x + y)(y + z) }

\rm \:  =  \: \dfrac{yz + xy+  {y}^{2}  + zx}{(x + y)(y + z) }

On rearranging the terms, we get

\rm \:  =  \: \dfrac{(yz + zx)+  ({y}^{2}  + yx)}{(x + y)(y + z) }

\rm \:  =  \: \dfrac{z(y + x)+  y({y}  + x)}{(x + y)(y + z) }

\rm \:  =  \: \dfrac{(z + y)(y + x)}{(x + y)(y + z) }

\rm \:  =  \:\cancel{ \dfrac{(x + y)(y + z)}{(x + y)(y + z) } }

\rm \:  =  \: 1

Hence,

 \red{\rm :\longmapsto\:2abc + ab + bc + ca = 1}

Answered by XxitsmrseenuxX
25

Answer:

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:x = a(y + z)

\bf\implies \:a = \dfrac{x}{y + z}

Also,

\rm :\longmapsto\:y = b(z + x)

\bf\implies \:b = \dfrac{y}{z + x}

Also,

\rm :\longmapsto\:z = c(x + y)

\bf\implies \:c = \dfrac{z}{x + y}

Now, Consider,

 \red{\rm :\longmapsto\:ab + bc + ca}

\rm \:  =  \: \dfrac{xy}{(y + z)(z + x)}  + \dfrac{yz}{(z + x)(x + y)}  + \dfrac{zx}{(x + y)(y + z)}

\rm \:  =  \: \dfrac{xy(x + y) + yz(y + z) + zx(z + x)}{(x + y)(y + z)(z + x)}

Now,

Consider

 \red{\rm :\longmapsto\:2abc + ab + bc + ca}

On substituting the values, we get

\rm =\dfrac{2xyz}{(x + y)(y + z)(z + x)}  + \dfrac{xy(x + y) + yz(y + z) + zx(z + x)}{(x + y)(y + z)(z + x)}

\rm = \dfrac{2xyz + xy(x + y) + yz(y + z) + zx(z + x)}{(x + y)(y + z)(z + x)}

\rm = \dfrac{2xyz +  {yx}^{2} +  {xy}^{2}   +  {zy}^{2} +  {yz}^{2} +  {zx}^{2} +  {xz}^{2} }{(x + y)(y + z)(z + x)}

on rearranging the terms, we have

\rm \:  = \dfrac{( {yx}^{2}+{yz}^{2} + 2xyz) + ( {xy}^{2} +  {zy}^{2}) + ( {zx}^{2} +  {xz}^{2}}{(x + y)(y + z)(z + x)}

\rm \:  = \dfrac{y({x}^{2}+{z}^{2} + 2xz) +  {y}^{2}(x + z)  +zx(x + z)}{(x + y)(y + z)(z + x)}

\rm \:  = \dfrac{y {(x + z)}^{2}  +  {y}^{2}(x + z)  +zx(x + z)}{(x + y)(y + z)(z + x)}

\rm \:  =  \: \dfrac{\cancel{(z + x)} \:  \: [y(z + x) +  {y}^{2}  + zx]}{(x + y)(y + z) \: \cancel{(z + x)}}

\rm \:  =  \: \dfrac{y(z + x) +  {y}^{2}  + zx}{(x + y)(y + z) }

\rm \:  =  \: \dfrac{yz + xy+  {y}^{2}  + zx}{(x + y)(y + z) }

On rearranging the terms, we get

\rm \:  =  \: \dfrac{(yz + zx)+  ({y}^{2}  + yx)}{(x + y)(y + z) }

\rm \:  =  \: \dfrac{z(y + x)+  y({y}  + x)}{(x + y)(y + z) }

\rm \:  =  \: \dfrac{(z + y)(y + x)}{(x + y)(y + z) }

\rm \:  =  \:\cancel{ \dfrac{(x + y)(y + z)}{(x + y)(y + z) } }

\rm \:  =  \: 1

Hence,

 \red{\rm :\longmapsto\:2abc + ab + bc + ca = 1}

Similar questions