x= Acos +Bsin , y= Asin- Bcos prove that x²+y²=a²+b²
Answers
Answer:
QED
Step-by-step explanation:
X^2 + y^2
= (Acos + bsin)^2 + (asin - bcos)^2
= A^2 cos^2 + b^2sin^2 +2abcos sin + a^2sin^2 + b^2cos^2 - 2absincos
= A^2(sin^2+cos^2) +b^2(sin^2+cos^2)
As sin^2 + cos^2 = 1 so
= A^2 + b^2
QED
Answer:
Given :-
x = a cos ∅ - b sin ∅
Therefore,
x² = (a cos∅ - b sin∅)²
x²= (a² Cos²∅) + (b² Sin2∅) - (2ab Cos∅ Sin∅) ---------------( 1)
Also given ,
y = a sin ∅ + b cos ∅
Therefore,
y² = (a sin ∅ + b cos∅)y² = (a² Sin²∅) + (b² Cos²∅) + (2ab Cos∅ Sin∅) ------(2)
Adding (1 )and( 2),
x² + y² = (a² Cos²∅) + (b² Sin²∅)-(2ab Cos∅ Sin∅)+(a²Sin²∅) + (b² Cos²∅) +(2ab Cos∅ Sin∅)
Cancelling (2ab Cos∅ Sin∅) and - (2ab Cos∅ Sin∅)
x² + y² = (a² Cos²∅) + (b²Sin²∅) + (a² Sin²∅) + (b² Cos²∅)
Bringing a² terms and b² terms together,
x² + y² = (a² Cos²∅) + (a² Sin²∅) + (b² Sin²∅) + (b² Cos²∅)
x² + y² = a² (Cos2∅ + Sin2∅) + b2 (Sin2∅ + Cos2∅)
By the identity Sin²∅ + Cos²∅ = 1
x² + y² = a2 (1) + b2 (1)
x² + y² = a² + b²
Hence, proved.