x=acos4teta y=asin4teta elemimating teta
Answers
Answered by
3
Answer:
Given, x=acos 4 θ and y=asin 4θ
On differentiating with respect to θ respectively, we getdθdx
=4acos 3 θ(−sinθ)
=−4asinθcos 3 θand dθdy
=4asin 3θcosθ
∴ ddxd = dθdxdθdy
= −4asinθcos 3θ4asin 3 θcosθ
⇒ ddxd =− cos 2θsin 2θ =−tan 2 θ
Now, ( dxdd ) θ= 43π =−tan 2 ( 43π )=−1
Similar questions