x=acosthta, y=bcotO prove that a^2/x^2 - b^2/y^2 =1
Answers
Answered by
16
Correct Question:-
If x = a cos θ , y = b cot θ ; prove that a²/x² - b²/y² = 1.
Answer:-
Given:-
x = a cos θ
⟹ x/a = cos θ
⟹ a/x = 1/cos θ
using sec θ = 1/cos θ we get,
⟹ a/x = sec θ
Now, Square both sides.
⟹ a²/x² = sec² θ -- equation (1).
Similarly,
y = b cot θ
⟹ y/b = cot θ
⟹ b/y = 1/cot θ
⟹ b/y = tan θ. [ ∵ tan θ = 1/cot θ ]
Squaring both sides we get,
⟹ b²/y² = tan² θ -- equation (2).
Now,
We have to prove:-
⟹ a²/x² - b²/y² = 1
Putting the respective values from equations (1) & (2) we get,
⟹ sec² θ - tan² θ = 1
using the identity sec² θ - tan² θ = 1 in LHS we get,
⟹ 1 = 1
Hence, Proved.
___________________________
Trigonometric identities:-
- sin² θ + cos² θ = 1
- sec² θ - tan² θ = 1
- cosec² θ - cot² θ = 1
Similar questions