Math, asked by gauravparmar, 1 year ago

x and y if (1+i)x-2i/3+i+(2-3i)y+i/3-i=i

Answers

Answered by stefangonzalez246
26

X = 3  ;  Y = -1.

Given

To find the value of x and y.      

                            \frac{(1+i)x-2i}{3+i} + \frac{(2-3i)y+i}{3-i} = i

                       \frac{[(1+i)x-2i].[3-i] + [(2-3i)y+i].[3+i]}{3^2 - i^2} = i

                      \frac{(3x+3ix-6i-ix+x-2)+(6y-9iy+3i+2iy+3y-1)}{9-1} = i

Now, arrange the real and imaginary terms,

                           \frac{(4x+9y-3) + i (2x-6-7y+3)}{10} = i

                           \frac{1}{10}.(4x+9y-3) + \frac{i}{10}.(2x-7y-3) = 0 + i

Equate real and imaginary parts,

\frac{1}{10}.(4x+9y-3) = 0                         \frac{i}{10}.(2x-7y-3)=i        

    4x+9y+1=0                            \frac{1}{10} . (2x-7y-3) = 1

     4x+9y= -3  ----> ( 1 )                  2x-7y-3=10\\  

                                                        2x-7y=10+3 = 13

                                                           2x-7y=13  ----> ( 2 )

By solving above equation ( 1 ) and ( 2 ),

                            4x+9y= - 3

                            2x-7y=13   ----> multiply by 2

                            4x-14y=26 -----> ( 3 )

Now, solve equation ( 1 ) and ( 3 ),

                            4x+9y= -3  ----> ( 1 )    

                            4x-14y=26 -----> ( 3 )

Solving above two equations, gives y value where y = -1 and x = 3

Therefore, x = 3 and y = -1.

To learn more...

1. brainly.in/question/7649260

2. brainly.in/question/7649174

     

                                                                 

                                     

Answered by dhanyasumesh140
2

the answer is 3,-1 hope it helps you

Similar questions