Math, asked by NancyAjram8073, 1 year ago

X=asin(y+b) defferential equation

Answers

Answered by Sharad001
66

Question :-

Solve differential equation.

x = a sin (y +b)

Answer :-

\rightarrow \red{ \boxed{ \sf{\frac{ {d}^{2} y}{d {x}^{2} }  = x { \bigg( \frac{dy}{dx}  \bigg)}^{2} }}} \:

Explanation :-

We have ,

→ x = a sin (y +b)

This equation has two constants ( a and b) so that's why we will have to do differentiation two times ,

  \rightarrow \: \sf{ x = \red{ a } \purple{\sin( \green{y + b})} }\\  \\ \sf{  \purple{differentiate }\: with \: \red{ respect \:} to \: x} \\  \\  \rightarrow \sf{1 = \blue{ a} \red{ \cos(y + b)} \frac{d}{dx}  \green{(y + b)}} \\  \\  \sf{ \rightarrow \: 1 = a \cos(y + b) \:  \frac{dy}{dx} }....(1) \\  \\ \sf{ \green{again \: } \red{differentiate }\: it} \\  \\

differentiate it by product rule of differentiation ,

 \rightarrow \sf{0 = a \cos(y + b) \frac{ {d}^{2}y }{d {x}^{2} }  +  \frac{dy}{dx}   \frac{d}{dx} a \cos(y + b)} \\  \\  \rightarrow  \sf{  \green{- a \cos(y + b) \frac{ {d}^{2} y}{d {x}^{2} } } =  \red{ - a \sin(y + b) \frac{dy}{dx}  \times  \frac{dy}{dx} }} \:  \:  \\   \sf{from \: (1)}\\  \\  \rightarrow  \sf{ \purple{ -  \frac{dx}{dy} \frac{ {d}^{2} y}{d {x}^{2} }}   =   \green{ - x {  \bigg(\frac{dy}{dx}  \bigg)}^{2} }} \\  \\  \rightarrow \red{ \boxed{ \sf{\frac{ {d}^{2} y}{d {x}^{2} }  = x { \bigg( \frac{dy}{dx}  \bigg)}^{2} }}}

\__________________/

#answerwithquality

#BAL

Similar questions