Math, asked by DarkRitesh, 11 months ago

X= b sec3 theta and y=a tan3 theta find (x/b) 2/3 - (y/a) 2/3​

Answers

Answered by Mankuthemonkey01
17

Answer

1

Explanation

Given,

x = b sec³∅ and y = a tan³∅!

→ x/b = sec³∅ and y/a = tan³∅

We have to find

\sf(\frac{x}{b})^{(\frac{2}{3})} - (\frac{y}{a})^{(\frac{2}{3})}

Putting the value of x/b as sec³∅ and that of y/a as tan³∅ we get

\sf sec^3\theta^{\frac{2}{3}} - tan^3\theta^{\frac{2}{3}}

= sec²∅ - tan²∅

= 1

(Using the identity, 1 + tan²∅ = sec²∅.)

Answered by Anonymous
19

\huge{\blue{\boxed{\green{\boxed{\orange{\underline{\bf{\mathfrak{\red{Solution}}}}}}}}}}

{\underline{\underline{\mathbb{\blue{Given}}}}}

x = b \:  { \sec \theta }^{3}  \\

y = a \:  { \tan \theta }^{3}  \\

Now finding the value of x/b and y/a

 \frac{x}{b}  =  { \sec \theta }^{3}  \\

 \frac{y}{a}  =  { \tan \theta}^{3}  \\

We have to find out the value of (x/b)⅔ and (y/a)⅔

Putting the required values here :-

 (\frac{ {x} }{b} )^{ \frac{2}{3} }  -  (\frac{y}{a} )^{ \frac{2}{3} }  = ( { \sec\theta}^{3} )^{ \frac{2}{3} }  -  {( \tan\theta}^{3} ) ^{ \frac{2}{3} }  \\

→ sec theta² - tan theta ²

As we know that tan theta² + 1 = sec theta²

So , 1 = sec theta ² - tan theta²

1 is the required value

Similar questions