Math, asked by rakkivarma855, 3 months ago

X can do a piece of work in 40 days. He works at it for 8 days and then Y finished it in 16 days. how long will theh together take to complete the work?​

Answers

Answered by Anonymous
38

Given :

  • X can do a piece of work in 40 days.He works at it for 8 days and then Y finished it in 16 days.

To Find :

  • how long will theh together take to complete the work?

Solution:

Now,

  • Let the total work to be done be 1

{\underline{\bf{\bigstar According \: to\: the\: question}}}

  • X can finish the work in 40 days
  • He worked for 8 days and left

 ✦ So, let's find the work he completed

 \longrightarrow \tt \: 1 : 40 =  A \: : 8 \\  \\  \\  \longrightarrow \tt 40 \times A =1 \times 8 \\  \\   \\  \longrightarrow \tt A =  \cancel\frac{8}{40}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \longrightarrow \tt A =  \frac{1}{5}  \bigstar \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • Henceforth he completed 1/5 th part of the work in 8 days

 ✦ Now let's find the work to be done

 \dashrightarrow \tt 1 -  \frac{1}{5}  \\  \\  \\ \dashrightarrow \tt \frac{5}{5}  -  \frac{1}{5}  \\  \\  \\ \dashrightarrow \tt \frac{4}{5}  \bigstar \:  \:  \:

  • Henceforth, 4/5 th part of the work is yet to be completed.

{\underline{\frak{As\: we\: know \:that}}}

  • Y completes the remaining work in 16 days

 ✦ So,

  • Y completes 4/5 th work in 16 days

Now,

  • Let's find Y's 1 day work

\dashrightarrow \tt \: Y _{(1 \: day \: work)} =  \frac{4}{5}  \div 16 \\  \\  \\\dashrightarrow \tt \: Y _{(1 \: day \: work)} \frac{ \dfrac{4}{5} }{16}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ \dashrightarrow \tt \: Y _{(1 \: day \: work)} =  \frac{4}{5}  \times  \frac{1}{16}  \\  \\  \\ \dashrightarrow \tt \: Y _{(1 \: day \: work)} =  \frac{1}{20}  \bigstar \:  \:  \:

 ✦ And

\dashrightarrow \tt \: X _{(1 \: day \: work)} = 1 \div 40 \\  \\  \\ \dashrightarrow \tt \: X _{(1 \: day \: work)} =  \frac{1}{40}  \bigstar \:

So,

  • Their 1 day work when they work together will be

 \longrightarrow \tt  \frac{1}{x}  +  \frac{1}{y}  \:  \:  \:  \:  \:  \:  \\  \\  \\  \longrightarrow \tt  \frac{1}{40}  +  \frac{1}{20}  \\  \\  \\  \longrightarrow \tt  \frac{1}{40}  +  \frac{2}{40}  \\  \\  \\  \longrightarrow \tt  \frac{3}{40}  \bigstar \:  \:  \:  \:  \:  \:

Now,

  • The total time taken taken to complete the work will be

 \longrightarrow \tt inverse \: of \:  \frac{3}{40} days \\  \\  \\  \longrightarrow  \tt \frac{40}{3} days \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \longrightarrow  { \boxed{ \pmb{ \frak{ 16 \frac{2}{3}  days }}}\bigstar } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Hence,

  • They will take 16 2/3 days when they work together

━━━━━━━━━━━━━━━━━━━━━━


mddilshad11ab: Perfect explaination ✔️
Similar questions