Math, asked by gundlavenkataraju, 10 months ago

X=cos alpa+isin alpha, y=cos beta+isin beta then xpower m*ypower n

Answers

Answered by MaheswariS
0

Demovire's theorem:

For any natural number n,

\boxed{(cos\,\theta+i\,sin\theta)^n=cos\,n\theta+i\,sin\,\theta}

Euler's formula:

\boxed{cos\,\theta+i\,sin\theta=e^{i\,\theta}}

Given:

x=cos\,\alpha+i\,sin\,\alpha

y=cos\,\beta+i\,sin\,\beta

Now,

x^m\,y^n

=(cos\,\alpha+i\,sin\,\alpha)^m\,(cos\,\beta+i\,sin\,\beta)^n

Using demovire's theorem

=(cos\,m\alpha+i\,sin\,m\alpha)\,(cos\,n\beta+i\,sin\,n\beta)

Using euler's formula

=e^{i\,m\alpha}\,e^{i\,n\beta}

=e^{i(m\,\alpha+n\,\beta)}

=cos(m\,\alpha+n\,\beta)+i\,sin(m\,\alpha+n\,\beta)

\therefore\boxed{\bf\,x^m\,y^n=cos(m\,\alpha+n\,\beta)+i\,sin(m\,\alpha+n\,\beta)}

Similar questions