Math, asked by gayu2030saro, 3 days ago

^π _ -π∫x cos x dx plz answer​

Answers

Answered by mathdude500
3

Appropriate Question :-

Evaluate the following :

\rm \: \displaystyle\int_{ - \pi}^{\pi} \: x \: cosx \: dx \\

\large\underline{\sf{Solution-}}

Given integral is

\rm \: \displaystyle\int_{ - \pi}^{\pi} \: x \: cosx \: dx \\

We know from properties of definite integrals,

\boxed{ \rm{ \: \begin{gathered}\begin{gathered}\bf\:\displaystyle\int_{ - a}^{a}f(x) dx= \begin{cases} &\sf{0 \:  \: if \: f( - x) =  - f(x)}  \\ \\ &\sf{2\displaystyle\int_{0}^{a} \sf \: f(x)dx  \:  \: if \: f( - x) = f(x)} \end{cases}\end{gathered}\end{gathered}\: }} \\

So, Consider

\rm \: f(x) = x \: cosx \\

So,

\rm \: f( - x) =  - x \: cos( - x) \\

\rm \: f( - x) =  - x \: cosx \\

\rm\implies \:f( - x)  \: =  \:  -  \: f(x) \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \: \displaystyle\int_{ - \pi}^{\pi} \: x \: cosx \: dx  \:  =  \: 0 \:  \: }} \: \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: properties}}}} \\ \\ \bigstar \: \bf{\displaystyle\int_{0}^{a}f(x) \: dx = \displaystyle\int_{0}^{a}f(y) \: dy}\\ \\ \bigstar \: \bf{\displaystyle\int_{a}^{b}f(x) \: dx \:  =  \:  - \displaystyle\int_{b}^{a}f(x) \: dx}\\ \\ \bigstar \: \bf{\displaystyle\int_{0}^{a}f(x) \: dx \:  =  \: \displaystyle\int_{0}^{a}f(a - x) \: dx}\\ \\ \bigstar \: \bf{\displaystyle\int_{a}^{b}f(x) \: dx \:  =  \: \displaystyle\int_{a}^{b}f(a + b - x) \: dx}\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions