Math, asked by akashdeep71, 11 months ago

X=cosec49 then
tan^249+1/sin^249sec^241+sin^241+1/cosec^249​

Answers

Answered by sanketj
0

from the above triangle, if angle C = 49° and angle B = 90°, the we get angle A = 41°

since

cosec49° = x

then, with respect to angle C

perpendicular = 1

hypotenuse = x

base = √(x² - 1) ... (using pythagoras theorem)

tan {49}^{o}  =  \frac{1}{ \sqrt{ {x}^{2}  - 1} }  \\  {tan}^{2}  {49}^{o}  =  \frac{1}{ {x}^{2}  - 1}

similarly,

 {sin}^{2}  {49}^{o}  =  \frac{1}{ {x}^{2} }  \\  {sec}^{2}  {41}^{o}  =  \frac{ {x}^{2} }{1}  =  {x}^{2}  \\  {sin}^{2}  {41}^{o}  =  \frac{ {x}^{2} - 1 }{ {x}^{2} } = 1 -  \frac{1}{ {x}^{2} }   \\  {cos}^{2}  {41}^{o}  =  \frac{1}{ {x}^{2} }

Now,

 \:  \:  \:  \:  \: \:  \:   {tan}^{2}  {49}^{o}  +  \frac{1}{ {sin}^{2} {49}^{o} {sec}^{2}  {41}^{o}   }   \\  \:  \:  \:  \:  \:  \:  +  {sin}^{2}  {41}^{o}   +   \frac{1}{ {cosec}^{2}  {49}^{o} }  \\ =    {tan}^{2}  {49}^{o}  +  {cosec}^{2}  {49}^{o}  {cos}^{2}  {41}^{o}  \\  \:  \:  \:  \:  \:  +  {sin}^{2}  {41}^{o}  +  {sin}^{2}  {49}^{o}  \\  =  \frac{1}{ {x}^{2}  - 1}  + ( \frac{1}{ {x}^{2} } )( {x}^{2} ) + 1 -  \frac{1}{ {x}^{2} }  +  \frac{1}{ {x}^{2} }  \\  =  \frac{1}{ {x}^{2}  - 1}  + 1 + 1 + 0 \\  =  \frac{1}{ {x}^{2}  - 1}  + 2 \\  =  \frac{1 + 2 {x}^{2} - 2 }{ {x}^{2} - 1 }  \\  =  \frac{2 {x}^{2}  - 1}{ {x}^{2} - 1 }  \\  =  \frac{( {x}^{2}  - 1) +  {x}^{2} }{ {x}^{2} - 1 }  \\  = 1 +  \frac{ {x}^{2} }{ {x}^{2} - 1 }

Attachments:
Similar questions