x=(cost)ᵗ y=(sint)ᵗ 0 < t < π/2,Find dy/dx for the given function y wherever defined
Answers
Answered by
2
x = (cost)^t = e^{t.logcost}
differentiate with respect to t,
dx/dt = d[e^{t.logcost}]/dt
= e^{t logcost} × d[t.logcost]/dt
= (cost)^t × [t × d(logcost)/dt + logcost × dt/dt ]
= (cost)^t × [t × (-sint)/cost + logcost × 1]
= (cost)^t [ -t.tant + logcost]
= x[-t.tant + logcost]
similarly, y = (sint)^t = e^{t.logsint}
differentiate with respect to t,
dy/dt = e^{t.logsint} × d[t logsint]/dt
= (sint)^t [t × d(logsint)/dt + logsint × dt/dt ]
= (sint)^t [ t × cost/sint + logsint]
= (sint)^t [t.cott + logsint]
= y[t.cott + logsint]
now, dy/dx = {dy/dt}/{dx/dt}
dy/dx = y[t.cott + logsint]/x[-t.tant +logcost]
differentiate with respect to t,
dx/dt = d[e^{t.logcost}]/dt
= e^{t logcost} × d[t.logcost]/dt
= (cost)^t × [t × d(logcost)/dt + logcost × dt/dt ]
= (cost)^t × [t × (-sint)/cost + logcost × 1]
= (cost)^t [ -t.tant + logcost]
= x[-t.tant + logcost]
similarly, y = (sint)^t = e^{t.logsint}
differentiate with respect to t,
dy/dt = e^{t.logsint} × d[t logsint]/dt
= (sint)^t [t × d(logsint)/dt + logsint × dt/dt ]
= (sint)^t [ t × cost/sint + logsint]
= (sint)^t [t.cott + logsint]
= y[t.cott + logsint]
now, dy/dx = {dy/dt}/{dx/dt}
dy/dx = y[t.cott + logsint]/x[-t.tant +logcost]
Answered by
4
HELLO DEAR,
GIVEN:-
x = (cost)^t
taking log both side,
logx = t log(cost)
differentiating w.r.t t
(1/x)*dx/dt = t.d{log(cost)}/dt + log(cosx).d(t)/dt
(1/x)*dx/dt = -t.tant + log(cosx)
dx/dt = (cost)^t [-t.tant + log(cosx)]-------( 1 )
AND,
Y = (sint)^t
taking log both side,
logy = t.log(sint)
differentiating w.r.t t
(1/y)*dy/dt = tcot t + log(sinx)
dy/dt = (sint)^t[tcot t + log(sinx)]------( 2 )
divide-------( 1 ) by --------( 2 )
dy/dx = {dy/dt}/{dx/dt}
dy/dx = [(sint)^t{tcot t + log(sinx)}]/[(cost)^t{-t.tan t + log(cosx)}]
dy/dx = (tan t)^t.[t cot t + log(sinx)] / [-t tan t + log(cosx)]
I HOPE ITS HELP YOU DEAR,
THANKS
GIVEN:-
x = (cost)^t
taking log both side,
logx = t log(cost)
differentiating w.r.t t
(1/x)*dx/dt = t.d{log(cost)}/dt + log(cosx).d(t)/dt
(1/x)*dx/dt = -t.tant + log(cosx)
dx/dt = (cost)^t [-t.tant + log(cosx)]-------( 1 )
AND,
Y = (sint)^t
taking log both side,
logy = t.log(sint)
differentiating w.r.t t
(1/y)*dy/dt = tcot t + log(sinx)
dy/dt = (sint)^t[tcot t + log(sinx)]------( 2 )
divide-------( 1 ) by --------( 2 )
dy/dx = {dy/dt}/{dx/dt}
dy/dx = [(sint)^t{tcot t + log(sinx)}]/[(cost)^t{-t.tan t + log(cosx)}]
dy/dx = (tan t)^t.[t cot t + log(sinx)] / [-t tan t + log(cosx)]
I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions