X= cot theta + cos theta and y = cot theta - cos theta then eliminate theta
Answers
Given : x = cot theta + cos theta and y = cot theta - cos theta
To find: Eliminate theta.
Solution:
- Now we have given the value of x and y as:
x = cot theta + cos theta ................(i)
y = cot theta - cos theta ...............(ii)
- Now adding i and ii, we get:
x + y = cot theta + cos theta + cot theta - cos theta
x + y = 2 cot theta
x + y = 2/tan theta
tan theta = 2 / x+y
- Now subtracting ii from i, we get:
x - y = cot theta + cos theta - cot theta + cos theta
x - y = 2 cos theta
x - y = 2 / sec theta
sec theta = 2 / x - y
- Now we know that 1 + tan^2 theta = sec^ theta
- So putting the values in formula, we get:
1 + (2 / x+y)^2 = (2 / x - y)^2
Answer:
So after eliminating theta, we get: 1 + (2 / x+y)^2 = (2 / x - y)^2