X cube + y cube + z cube - 3xyz = 1/2(x +y + z)[(x - y) whole square + (y - z) whole square + (z - x ) whole square]
Answers
Answer:
LHS = RHS (proved )
Step-by-step explanation:
LHS :
RHS:
Formula used :
Answer: BY LHS AND RHS WE CAN PROVE IT..
Step-by-step explanation:
LHS:
{x}^{3} + {y}^{3} + {z}^{3} - 3xyz
= (x + y + z)( {x}^{2} + {y}^{2} + {z}^{2} - xy - yz - xz)
RHS:
{1}{2} (x + y + z)( {(x - y)}^{2} + {(y - z)}^{2} + {(z - x)}^{2}
={1}{2} (x + y + z)( {x}^{2} - 2xy + {y}^{2} + {y}^{2} - 2yz + {z}^{2} + {z}^{2} - 2xz + {x}^{2} )
={1}{2} (x + y + z)(2 {x}^{2} + 2 {y}^{2} +2 {z}^{2} - 2xy - 2xz - 2yz) {1}{2} (x + y + z)2( {x}^{2} + {y}^{2} + {z}^{2} - xy - xz - yz)=(x + y + z)( {x}^{2} + {y}^{2} + {z}^{2} - xy - yz - xz)
Formula used:
{a}^{3} + {b}^{3} + {c}^{3} - 3abc=(a + b + c)
( {a}^{2} + {b}^{2} + {c}^{2} - ab - bc - ca)
{(a - b)}^{2} = {a}^{2} - 2ab + {b}^{2}
HOPE IT HELPS
PLEASE MARK IT AS BRAINLIEST!