Math, asked by nm0981212, 11 months ago

X cube + y cube + z cube - 3xyz = 1/2(x +y + z)[(x - y) whole square + (y - z) whole square + (z - x ) whole square]

Answers

Answered by avinash2201
48

Answer:

LHS = RHS (proved )

Step-by-step explanation:

LHS :

 {x}^{3}  +  {y}^{3}  +  {z}^{3}  - 3xyz \\ \\   = (x + y + z)( {x}^{2}  +  {y}^{2}  +  {z}^{2}  - xy - yz - xz)

RHS:

 \frac{1}{2} (x + y + z)( {(x  -  y)}^{2}  +  {(y - z)}^{2}  +  {(z - x)}^{2}  \\  \\  =  \frac{1}{2} (x + y + z)( {x}^{2}  - 2xy +  {y}^{2} +   {y}^{2}  - 2yz +  {z}^{2}  +  {z}^{2}  - 2xz +  {x}^{2} ) \\  \\  =  >  \frac{1}{2} (x + y + z)(2 {x}^{2}  + 2 {y}^{2}  +2  {z}^{2}  - 2xy - 2xz - 2yz) \\  \\  >  \frac{1}{2} (x + y + z)2( {x}^{2}  +  {y}^{2}  +  {z}^{2}  - xy - xz - yz) \\  \\  =  > (x + y + z)( {x}^{2}  +  {y}^{2}  +  {z}^{2}  - xy - yz - xz)

Formula used :

 {a}^{3}  +  {b}^{3}  +  {c}^{3} - 3abc \\  =  > (a + b + c) ( {a}^{2}  +  {b}^{2}  +  {c}^{2}  - ab - bc  - ca)

 {(a - b)}^{2}  =  {a}^{2}  - 2ab +  {b}^{2}

Answered by yashvimehta305
7

Answer: BY LHS AND RHS WE CAN PROVE IT..

Step-by-step explanation:

LHS:

{x}^{3}  +  {y}^{3}  +  {z}^{3}  - 3xyz

= (x + y + z)( {x}^{2}  +  {y}^{2}  +  {z}^{2}  - xy - yz - xz)

RHS:

{1}{2} (x + y + z)( {(x  -  y)}^{2}  +  {(y - z)}^{2}  +  {(z - x)}^{2}

={1}{2} (x + y + z)( {x}^{2}  - 2xy +  {y}^{2} +   {y}^{2}  - 2yz +  {z}^{2}  +  {z}^{2}  - 2xz +  {x}^{2} )

={1}{2} (x + y + z)(2 {x}^{2}  + 2 {y}^{2}  +2  {z}^{2}  - 2xy - 2xz - 2yz) {1}{2} (x + y + z)2( {x}^{2}  +  {y}^{2}  +  {z}^{2}  - xy - xz - yz)=(x + y + z)( {x}^{2}  +  {y}^{2}  +  {z}^{2}  - xy - yz - xz)

Formula used:

{a}^{3}  +  {b}^{3}  +  {c}^{3} - 3abc=(a + b + c)

( {a}^{2}  +  {b}^{2}  +  {c}^{2}  - ab - bc  - ca)  

{(a - b)}^{2}  =  {a}^{2}  - 2ab +  {b}^{2}

HOPE IT HELPS

PLEASE MARK IT AS BRAINLIEST!

Similar questions