Math, asked by goyalniteshi06, 7 months ago

x= e^cos3t y=e^sin3t then dy/dx​

Answers

Answered by Asterinn
8

Given :

x= {e}^{cos3t}

y=e^{sin3t}

To find :

 \dfrac{dy}{dx}

Concept :

 \dfrac{dy}{dx}  = \dfrac{  \frac{dy}{dt} }{ \frac{dx}{dt} }

\dfrac{  \frac{dy}{dt} }{ \frac{dx}{dt} }  =  \dfrac{dy \times dt }{dx \times dt}

dt will get cancelled from numerator and denominator :-

\dfrac{  \frac{dy}{dt} }{ \frac{dx}{dt} }  =  \dfrac{dy }{dx}

Solution :

Now first we will find dy/dt :-

 \dfrac{d(y)}{dt} = \dfrac{d(e^{sin3t})}{dt}

we know :-

  • d (e^x)/dx = e^x dx/dx.
  • d (sin x)/dx = cos x dx/dx.

By applying Chain rule :-

 \dfrac{d(y)}{dt} =e^{sin3t}  \times cos \: 3t \:  \times 3

Now , we will find dx/dt :-

\dfrac{d(x)}{dt} = \dfrac{d({e}^{cos3t})}{dt}

we know :-

  • d (e^x)/dx = e^x dx/dx.
  • d (cos x)/dx = - sin x dx/dx.

By applying Chain rule :-

\dfrac{d(x)}{dt} = {e}^{cos3t}  \times sin \: 3t \times 3

Now we will find dy/dx :-

\dfrac{  \frac{dy}{dt} }{ \frac{dx}{dt} }   = \dfrac{e^{sin3t}  \times cos \: 3t \:  \times 3}{ {e}^{cos3t}  \times sin \: 3t \times 3}

( cos x/ sinx = cotx)

 \dfrac{dy}{dx}  = e^{sin3t - cos3t}  cot \:3t

ANSWER :

 \dfrac{dy}{dx}  = e^{sin3t - cos3t}  cot \: 3t

____________________

Learn more :-

d(sinx)/dx = cosx

d(cos x)/dx = -sin x

d(cosec x)/dx = -cot x cosec x

d(tan x)/dx = sec²x

d(sec x)/dx = secx tanx

d(cot x)/dx = - cosec² x

d(log x )/dx= 1/x

d (e^x)/dx = e^x

________________________

Similar questions