X equals to 4 cos theta minus 5 sin theta, y equals to 4 sin theta + 5 cos theta
Answers
Complete question:
Eliminate theta from the following: x=4cos theta-5 sin theta, y=4 sin theta +5 cos theta
Answer:
x² + y² = 6²
Step-by-step explanation:
we are given that
x = 4cos(Ф) - 5 sin(Ф) .....(1)
y = 4sin(Ф) + 5cos(Ф) .....(2)
Taking square on both sides of both equations we get
x² = 4²cos²(Ф) + 5² sin²(Ф) - 2(4)(5)sin(Ф)cos(Ф) ....(3)
y² = 4²sin²(Ф) + 5²cos²(Ф) + 2(4)(5)sin(Ф)cos(Ф) ....(4)
Adding equation (3) and equation (4) we get
x² + y² = 4²cos²(Ф) + 5² sin²(Ф) + 4²sin²(Ф) + 5²cos²(Ф)
= 4²cos²(Ф) + 4²sin²(Ф) + 5² sin²(Ф) + 5²cos²(Ф)
= 4²( cos²(Ф) + sin²(Ф) ) + 5²( cos²(Ф) + sin²(Ф) )
= 4²( 1 ) + 5²( 1 ) ∵ cos²(Ф) + sin²(Ф) = 1
= 16 + 25
= 36
= 6²
Hence we the new equation in which angle is not present.
x² + y² = 6²