x
Find Integration, y = x/a®2+x®2
Answers
Answered by
0
Answer:
Explanation:
Here,
I
=
∫
x
2
(
a
2
−
x
2
)
3
2
d
x
Let ,
x
=
a
sin
t
⇒
d
x
=
a
cos
t
d
t
∴
a
2
−
x
2
=
a
2
−
a
2
sin
2
t
=
a
2
(
1
−
sin
2
t
)
=
a
2
cos
2
t
So,
I
=
∫
a
2
sin
2
t
(
a
2
cos
2
t
)
3
2
a
cos
t
d
t
=
∫
a
3
sin
2
t
cos
t
a
3
cos
3
t
d
t
=
∫
sin
2
t
cos
2
t
d
t
=
∫
tan
2
t
d
t
=
∫
(
sec
2
t
−
1
)
d
t
=
tan
t
−
t
+
c
=
sin
t
cos
t
−
t
+
c
=
sin
t
√
1
−
sin
2
t
−
t
+
c
Now,
x
=
a
sin
t
⇒
sin
t
=
x
a
and
t
=
sin
−
1
(
x
a
)
Hence,
I
=
x
a
√
1
−
(
x
2
a
2
)
−
sin
−
1
(
x
a
)
+
c
Similar questions
History,
2 months ago
English,
2 months ago
Accountancy,
2 months ago
English,
5 months ago
Computer Science,
5 months ago
Math,
10 months ago
Math,
10 months ago
Math,
10 months ago