x=++h % 5. If h=5 initially evaluate urgent need
Answers
Answer:
Given f (x) = 3x + 2 and g(x) = 4 – 5x, find (f + g)(x), (f – g)(x), (f × g)(x), and (f / g)(x).
To find the answers, all I have to do is apply the operations (plus, minus, times, and divide) that they tell me to, in the order that they tell me to.
(f + g)(x) = f (x) + g(x)
= [3x + 2] + [4 – 5x]
= 3x + 2 + 4 – 5x
= 3x – 5x + 2 + 4
= –2x + 6
(f – g)(x) = f (x) – g(x)
= [3x + 2] – [4 – 5x]
= 3x + 2 – 4 + 5x
= 3x + 5x + 2 – 4
= 8x – 2
(f × g)(x) = [f (x)][g(x)]
= (3x + 2)(4 – 5x)
= 12x + 8 – 15x2 – 10x
= –15x2 + 2x + 8
\left(\small{\dfrac{f}{g}}\right)(x) = \small{\dfrac{f(x)}{g(x)}}(
g
f
)(x)=
g(x)
f(x)
= \small{\dfrac{3x+2}{4-5x}}=
4−5x
3x+2
My answer is the neat listing of each of my results, clearly labelled as to which is which.
( f + g ) (x) = –2x + 6
( f – g ) (x) = 8x – 2
( f × g ) (x) = –15x2 + 2x + 8
\mathbf{\color{purple}{ \left(\small{\dfrac{\mathit{f}}{\mathit{g}}}\right)(\mathit{x}) = \small{\dfrac{3\mathit{x} + 2}{4 - 5\mathit{x}}} }}(
g
f
)(x)=
4−5x
3x+2
Content Continues Below
Given f (x) = 2x, g(x) = x + 4, and h(x) = 5 – x3, find (f + g)(2), (h – g)(2), (f × h)(2), and (h / g)(2).
This exercise differs from the previous one in that I not only have to do the operations with the functions, but I also have to evaluate at a particular x-value. To find the answers, I can either work symbolically (like in the previous example) and then evaluate, or else I can find the values of the functions at x = 2 and then work from there. It's probably simpler in this case to evaluate first, so:
f (2) = 2(2) = 4
g(2) = (2) + 4 = 6
h(2) = 5 – (2)3 = 5 – 8 = –3
Now I can evaluate the listed expressions:
(f + g)(2) = f (2) + g(2)
= 4 + 6 = 10
(h – g)(2) = h(2) – g(2)
= –3 – 6 = –9
(f × h)(2) = f (2) × h(2)
= (4)(–3)= –12
(h / g)(2) = h(2) ÷ g(2)
= –3 ÷ 6 = –0.5
Then my answer is:
(f + g)(2) = 10, (h – g)(2) = –9, (f × h)(2) = –12, (h / g)(2) = –0.
x=++h % 5 if h = 5 will evaluate to 1