Math, asked by yeshaswini0209, 10 hours ago

x if (√4/5)^x- 1 =125/64​

Answers

Answered by amitnrw
1

Given :  (√4/5)ˣ⁻¹  = 125/65

(\sqrt{\frac{4}{5}})^{x-1}=\dfrac{125}{64}

To Find: Solve for x

Solution:

(\sqrt{\frac{4}{5}})^{x-1}=\dfrac{125}{64}

125 = 5³  = (√5)⁶

64 =  4³  = (√4)⁶

\dfrac{125}{64} =\dfrac{(\sqrt{5})^6  }{\sqrt{4})^6 }

\dfrac{125}{64} =({\sqrt{\dfrac{5}{4}})^6

\dfrac{125}{64} =({\sqrt{\dfrac{4}{5}})^{-6}

(\sqrt{\dfrac{4}{5}})^{x-1}=\dfrac{125}{64}

(\sqrt{\dfrac{4}{5}})^{x-1}=({\sqrt{\dfrac{4}{5}})^{-6}

Base are same so equate powers

Hence x - 1 =   - 6

=> x = - 5

Value of x is -5

Learn More:

0.243^0.2×10^0.6=? Pls help me it's very urgent - Brainly.in

brainly.in/question/3246219

3⁴)² ÷ [3⁴ X 3⁵] : Evaluate.

brainly.in/question/5030040

Answered by pulakmath007
1

SOLUTION

GIVEN

\displaystyle \sf{   { \bigg( \sqrt{ \frac{4}{5} }  \bigg)}^{x - 1}   =  \frac{125}{64} }

TO DETERMINE

The value of x

FORMULA TO BE IMPLEMENTED

We are aware of the formula on indices that :

 \sf{1. \:  \:  {a}^{m}  \times  {a}^{n} =  {a}^{m + n}  }

 \displaystyle \sf{2. \:  \:  \:  \frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n} }

 \displaystyle \sf{3. \:  \:  \:  { ({a}^{m} )}^{n} =  {a}^{mn}  }

 \displaystyle \sf{4. \:  \:  {a}^{0}  = 1}

EVALUATION

Here the given equation is

\displaystyle \sf{   { \bigg( \sqrt{ \frac{4}{5} }  \bigg)}^{x - 1}   =  \frac{125}{64} }

We find the value of x as below

\displaystyle \sf{   { \bigg( \sqrt{ \frac{4}{5} }  \bigg)}^{x - 1}   =  \frac{125}{64} }

\displaystyle\sf{  \implies  { \bigg[ { \bigg(  \frac{4}{5}\bigg)}^{ \frac{1}{2} }    \bigg]}^{x - 1}   =  \frac{ {5}^{3} }{ {4}^{3} } }

\displaystyle\sf{  \implies  { \bigg[ { \bigg(  \frac{4}{5}\bigg)}^{ \frac{1}{2} }    \bigg]}^{x - 1}   =  { \bigg(  \frac{5}{4}\bigg)}^{ 3 }  }

\displaystyle\sf{  \implies   { \bigg(  \frac{4}{5}\bigg)}^{ \frac{x - 1}{2} }    =  { \bigg[ { \bigg(  \frac{4}{5}\bigg)}^{  - 1}    \bigg]}^{3}   }

\displaystyle\sf{  \implies   { \bigg(  \frac{4}{5}\bigg)}^{ \frac{x - 1}{2} }    =  { \bigg(  \frac{4}{5}\bigg)}^{  - 3}     }

\displaystyle\sf{  \implies   \frac{x - 1}{2}  =  -  3}

\displaystyle\sf{  \implies   x - 1 =  - 6}

\displaystyle\sf{  \implies   x =  - 5}

FINAL ANSWER

Hence the required value of x = - 5

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. find the value of x (2) 5) -³×(2/5) ^18=(2/5)^10x

https://brainly.in/question/47348923

2. If (-2)m+1 × (-2)4 = (-2)6 then value of m =

https://brainly.in/question/25449835

Similar questions
Math, 8 months ago