Math, asked by sivyavalsaraj, 3 months ago

x is a natural number. (a) What number should be added to x 2+2x to get a perfect square ? 1 (b) If x 2+2x=15. Find the natural number represented by x.

Answers

Answered by harshitha202034
14

Answer:

a) x² + 2x + 1

b) x = 3

Step-by-step explanation:

a) \:  \:  \:  {x}^{2} + 2x  \\ Let \:  \:  us  \:  \: assume,  \:  \: x = 5 \\  {x}^{2} + 2x \\  =  {5}^{2} + 2(5) \\  = 25 + 10 \\  = 35  \\ 36 \:  \: is \:  \: a \:  \: perfect \:  \: square \\ 1 \:  \: should \:  \: be \:  \: added \:  \: to \:  \: the \:  \: eqaution , \\ to \:  \: get \:  \: a \:  \: perfect \:  \: square \:  \: as \:  \: answer. \\ That \:  \:  is,  \\ \large{ {x}^{2} + 2x + 1} \\ Let's  \:  \: check,  \:  \: once \:  \:  again  \\   {x}^{2}  + 2x + 1 \\   = {5}^{2} + 2(5) + 1 \\  = 25 + 10 + 1 \\  = 36  \: ( {6}^{2} )  \\  \\ (b) \:  \:  \:  {x}^{2}  + 2x = 15 \\  {x}^{2}  + 2x - 15 = 0 \\  \:  \:  {x}^{2}  + 5x - 3x - 15 = 0 \\  \:  \:  x(x + 5) - 3(x + 5) = 0 \\  \:  \: (x + 5)(x - 3) = 0 \\  \:  \: x + 5 = 0 \:  \:  \: or \:  \:  \: x - 3 = 0 \\  \:  \: x =  \underline{ \underline{ - 5}} \:  \:  \: or \:  \:  \: x = \underline{ \underline{3}} \\  \:  \:  \:  \:  \large{x = 3} \: (natural \:  \: number)

Answered by bsameena560
1

Step-by-step explanation:

x² + 2x + 1

b) x = 3

Step-by-step explanation:

\begin{gathered}a) \: \: \: {x}^{2} + 2x \\ Let \: \: us \: \: assume, \: \: x = 5 \\ {x}^{2} + 2x \\ = {5}^{2} + 2(5) \\ = 25 + 10 \\ = 35 \\ 36 \: \: is \: \: a \: \: perfect \: \: square \\ 1 \: \: should \: \: be \: \: added \: \: to \: \: the \: \: eqaution , \\ to \: \: get \: \: a \: \: perfect \: \: square \: \: as \: \: answer. \\ That \: \: is, \\ \large{ {x}^{2} + 2x + 1} \\ Let's \: \: check, \: \: once \: \: again \\ {x}^{2} + 2x + 1 \\ = {5}^{2} + 2(5) + 1 \\ = 25 + 10 + 1 \\ = 36 \: ( {6}^{2} ) \\ \\ (b) \: \: \: {x}^{2} + 2x = 15 \\ {x}^{2} + 2x - 15 = 0 \\ \: \: {x}^{2} + 5x - 3x - 15 = 0 \\ \: \: x(x + 5) - 3(x + 5) = 0 \\ \: \: (x + 5)(x - 3) = 0 \\ \: \: x + 5 = 0 \: \: \: or \: \: \: x - 3 = 0 \\ \: \: x = \underline{ \underline{ - 5}} \: \: \: or \: \: \: x = \underline{ \underline{3}} \\ \: \: \: \: \large{x = 3} \: (natural \: \: number) \end{gathered}

a)x

2

+2x

Letusassume,x=5

x

2

+2x

=5

2

+2(5)

=25+10

=35

36is a perfect square

1shouldbeaddedtotheeqaution,

to get a perfect square as answer.

ie.

x

2

+2x+1

Let

check,once again

x

2

+2x+1

=5

2

+2(5)+1

=25+10+1

=36(6

2

)

(b)x

2

+2x=15

x

2

+2x−15=0

x

2

+5x−3x−15=0

x(x+5)−3(x+5)=0

(x+5)(x−3)=0

x+5=0orx−3=0

x=

−5

orx=

3

x=3(naturalnumber)

Similar questions