Math, asked by avinsmallo5408, 1 year ago

X is poisson variate with parameter 3. find the probability that x assumes the values i) 3,2,1,0 ii) less than 3 iii) at least 2

Answers

Answered by dryomys
1

Solution: We are given that X follows Poisson distribution with parameter 3.

i) x = 0, 1, 2, 3

Answer: We know that if X follows poisson distribution with parameter λ. Then the probability distribution is:

P(X=x) = \frac{e^{-\lambda} \lambda^{x}}{x!}

We are required to find:

P(x=0) = \frac{e^{-3}3^{0} }{0!}

                  =0.0498

P(x=1) = \frac{e^{-3}3^{1} }{1!}

                  =0.1494

P(x=2) = \frac{e^{-3}3^{2} }{2!}

                  =0.2240  

P(x=3) = \frac{e^{-3}3^{3} }{3!}

                  =0.2240  

ii) less than 3

Answer: We have to find here

P(x<3) = P(x=0) +P(x=1) +P(x=2)

          =0.0498+0.1494+0.2240=0.4232

iii) at least 2

Answer: We have to find here:

P(x\geq 2)

We know that:

P(x\geq 2) = 1-P(x<2)

                        =1- (P(x=0) +P(x =1))

                        =1 - (0.0498+0.1494)

                        =1-0.1991

                        =0.8009

Similar questions