Math, asked by samiksha1536, 1 year ago

x is the radius of the circle, if the diameter increased by 2 units , then write the perimeter of circle in the formnof x

Answers

Answered by Anonymous
2
\mathfrak{\huge{Answer:}}

Given is the radius of the circle = x

And the condition given to us is that the diameter is increased by 2 units. In the algebraic form, it means that :

New Diameter = Old Diameter + 2 units

We know that the diameter = 2 radius

=》 The Old Diameter will be = 2x

=》 The New Diameter will be = 2x + 2

We know that the perimeter of a circle = Circumference of the circle = \tt{2 \pi r} = \tt{\pi d}

Circumference = \tt{\pi \times (2x + 2)} units

Circumference = \tt{3.14 \times (2x + 2)} units

Circumference = \tt{6.28x + 3.14} units

That's the answer!

Brainly9b78: Good Answer
Anonymous: Thanks
Answered by Brainly9b78
6
\large{\sf{Question}}


x is the radius of the circle, if the diameter increased by 2 units, then write the perimeter of circle in the form of x.

____________________________________


\large{\sf{Answer}}


Circumference = 6.28x + 3.14

____________________________________


\huge \pink{ \mid \underline{ \overline{ \sf Brainly \: Solution :}} \mid}


 \sf Given  \:  \\ \sf Radius \: of  \: Circle   = \underline{ x } \\ \sf Diameter  \:  of \:  Circle = 2 \times Radius \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf= \underline{2x}\\  \\ \sf \large ATQ \\  \sf New \: Diameter = Old \: Diameter + 2 \: units \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf=  \underline{2x + 2} \\  \\ \mathscr{ Perimeter \: of \: Circle = Circumference \: of \: Circle } \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf= 2\pi r  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \boxed{ \sf As \: we \: know \: that \: 2r = d} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf\:  = \pi d \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf \:  = 3.14 \times (2x + 2 )\\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf \:  = 6.28x + 3.14


 \huge \orange{ \boxed{ \boxed{ \sf{ \therefore Circumference = 6.28x+3.14}}}}



✔✔ Hence, it is solved ✅✅.



\huge \green{ \boxed{ \boxed{ \mathscr{THANKS}}}}

kingArsh07: hi
kingArsh07: hlo
Similar questions