Math, asked by saniyyahabbaskhan, 6 hours ago

x+iy=√a+ib/c+id,then prove that (x²+y²)²=a²+b²/c²+d²​

Answers

Answered by deependrajha88
0

Answer:

Step-by-step explanation:

iven that,

x−iy=  

c−id

a−ib

 

 

⟹(x−iy)  

2

=  

c−id

a−ib

×  

c+id

c+id

=  

c  

2

+d  

2

 

(ac+bd)−i(bc−ad)

 

⟹(x  

2

−y  

2

)−i(2xy)=(  

c  

2

+d  

2

 

ac+bd

)−i(  

c  

2

+d  

2

 

bc−ad

)

Equating real and imaginary parts on both sides, we get

x  

2

−y  

2

=  

c  

2

+d  

2

 

ac+bd

  and 2xy=  

c  

2

+d  

2

 

bc−ad

 

Now, (x+iy)  

2

=(x  

2

−y  

2

)+i(2xy)=(  

c  

2

+d  

2

 

ac+bd

)+i(  

c  

2

+d  

2

 

bc−ad

)

⟹(x+iy)  

2

=  

c  

2

+d  

2

 

(ac+bd)+i(bc−ad)

=  

(c+id)(c−id)

(a+ib)(c−id)

=  

c+id

a+ib

 

⟹x+iy=  

c+id

a+ib

 

 

LHS=(x  

2

+y  

2

)  

2

=[(x−iy)(x+iy)]  

2

=(x−iy)  

2

(x+iy)  

2

 

          =(  

c−id

a−ib

)(  

c+id

a+ib

)

          =  

c  

2

+d  

2

 

a  

2

+b  

2

 

 

          =RHS

Hence proved.

please vote...

Attachments:
Similar questions