x=-k/2 , 2x^2+(k-6)x-3k=0
with full explanation
Answers
Given: 2x2 + (k – 6)x – 3k = 0 and x =−k2 .
Given: 2x2 + (k – 6)x – 3k = 0 and x =−k2 .On substituting x =−k2 in L.H.S. of the given equation, we get:
Given: 2x2 + (k – 6)x – 3k = 0 and x =−k2 .On substituting x =−k2 in L.H.S. of the given equation, we get:
Given: 2x2 + (k – 6)x – 3k = 0 and x =−k2 .On substituting x =−k2 in L.H.S. of the given equation, we get: 2(−k2)2+(k−6)(−k2)−3k=2k24−k22+3k−3k=2k2−2k24=0
Given: 2x2 + (k – 6)x – 3k = 0 and x =−k2 .On substituting x =−k2 in L.H.S. of the given equation, we get: 2(−k2)2+(k−6)(−k2)−3k=2k24−k22+3k−3k=2k2−2k24=0
Given: 2x2 + (k – 6)x – 3k = 0 and x =−k2 .On substituting x =−k2 in L.H.S. of the given equation, we get: 2(−k2)2+(k−6)(−k2)−3k=2k24−k22+3k−3k=2k2−2k24=0 = >L.H.S. = R.H.S.
Given: 2x2 + (k – 6)x – 3k = 0 and x =−k2 .On substituting x =−k2 in L.H.S. of the given equation, we get: 2(−k2)2+(k−6)(−k2)−3k=2k24−k22+3k−3k=2k2−2k24=0 = >L.H.S. = R.H.S.Thus, x =−k2 satisfies the given equation.
Given: 2x2 + (k – 6)x – 3k = 0 and x =−k2 .On substituting x =−k2 in L.H.S. of the given equation, we get: 2(−k2)2+(k−6)(−k2)−3k=2k24−k22+3k−3k=2k2−2k24=0 = >L.H.S. = R.H.S.Thus, x =−k2 satisfies the given equation.Therefore, x =−k2 is a root of the given quadratic equation.
follow me dear for instant doubt solving..❤️❤️
Answer:
fu. you..........................
Step-by-step explanation:
,.........................