Math, asked by rehadewan08, 1 month ago

( x^l / x^m )^l2–ml+m2 × ( x^m / x^n )^m2–mn+n2 × ( x^n / x^l )^n2–nl+l2



( don't give unnecessary answers ) ( give correct answer only ) ​

Attachments:

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

We know,

  \green{\boxed{ \bf \:  \:  {a}^{x}  \div  {a}^{y}  =  {a}^{x - y} }}

  \green{\boxed{ \bf \:  \:  {a}^{x}  \times  {a}^{y}  =  {a}^{x  +  y} }}

\green{\boxed{ \bf \:  {x}^{0}   = 1\: }}

\green{\boxed{ \bf \:  {( {x}^{m} )}^{n}  \:  =  \:  {x}^{mn} }}

and

\green{\boxed{ \bf \: (x - y)( {x}^{2} + xy +  {y}^{2}) =  {x}^{3} -  {y}^{3}\: }}

Consider,

 \red{\bf :\longmapsto\: {\bigg(\dfrac{ {x}^{l} }{ {x}^{m} } \bigg) }^{ {l}^{2} - lm +  {m}^{2} }}

\rm \:  =  \:  \: {\bigg( {x}^{(l - m)}  \bigg) }^{ {l}^{2} - lm +  {m}^{2} }

\rm \:  =  \:  \: {\bigg( {x}\bigg) }^{ (l - m)({l}^{2} - lm +  {m}^{2} )}

\rm \:  =  \:  \: {\bigg( {x}\bigg) }^{({l}^{3} -{m}^{3} )}

 \red{\bf :\implies\: {\bigg(\dfrac{ {x}^{l} }{ {x}^{m} } \bigg) }^{ {l}^{2} - lm +  {m}^{2} } =  {x}^{( {l}^{3}  -  {m}^{3})}  -  -  -  - (1)}

Consider,

 \green{\bf :\longmapsto\: {\bigg(\dfrac{ {x}^{m} }{ {x}^{n} } \bigg) }^{ {m}^{2} - mn +  {n}^{2} }}

\rm \:  =  \:  \: {\bigg( {x}^{(m - n)}  \bigg) }^{ {m}^{2} - mn +  {n}^{2} }

\rm \:  =  \:  \: {\bigg( {x}  \bigg) }^{(m - n)( {m}^{2} - mn +  {n}^{2}) }

\rm \:  =  \:  \: {\bigg( {x}\bigg) }^{({m}^{3} -{n}^{3} )}

 \green{\bf :\implies\: {\bigg(\dfrac{ {x}^{m} }{ {x}^{n} } \bigg) }^{ {m}^{2} - mn +  {n}^{2} } =  {x}^{( {m}^{3}  -  {n}^{3})}  -  -  -  - (2)}

Consider

 \pink{\bf :\longmapsto\: {\bigg(\dfrac{ {x}^{n} }{ {x}^{l} } \bigg) }^{ {n}^{2} - nl \: +  {l}^{2} }}

\rm \:  =  \:  \: {\bigg( {x}^{(n - l)}  \bigg) }^{ {n}^{2} - ln +  {l}^{2} }

\rm \:  =  \:  \: {\bigg( {x}  \bigg) }^{(n - l)( {n}^{2} - ln +  {l}^{2})}

\rm \:  =  \:  \: {\bigg( {x}\bigg) }^{({n}^{3} -{l}^{3} )}

 \pink{\bf :\implies\: {\bigg(\dfrac{ {x}^{n} }{ {x}^{l} } \bigg) }^{ {n}^{2} - nl +  {l}^{2} } =  {x}^{( {n}^{3}  -  {l}^{3})}  -  -  -  - (3)}

Now,

Consider,

 \blue{\bf :\longmapsto\:{\bigg(\dfrac{ {x}^{l} }{ {x}^{m} } \bigg) }^{ {l}^{2} - lm \: +  {m}^{2} }  \times  {\bigg(\dfrac{ {x}^{m} }{ {x}^{n} } \bigg) }^{ {m}^{2} - nm \: +  {n}^{2} }  \times  {\bigg(\dfrac{ {x}^{n} }{ {x}^{l} } \bigg) }^{ {n}^{2} - nl \: +  {l}^{2} }}

\rm \:  =  \:  \:  {x}^{ {l}^{3}  -  {m}^{3} } \times  {x}^{ {m}^{3}  -  {n}^{3} } \times {x}^{ {l}^{3}  -  {m}^{3} }

\rm \:  =  \:  \: {x}^{ {l}^{3}  -  {m}^{3}  +  {m}^{3}  -  {n}^{3}  +  {n}^{3} -  {l}^{3}  }

\rm \:  =  \:  \:  {x}^{0}

\rm \:  =  \:  \: 1

Hence,

 \blue{\bf :\longmapsto\:{\bigg(\dfrac{ {x}^{l} }{ {x}^{m} } \bigg) }^{ {l}^{2} - lm \: +  {m}^{2} }  \times  {\bigg(\dfrac{ {x}^{m} }{ {x}^{n} } \bigg) }^{ {m}^{2} - nm \: +  {n}^{2} }  \times  {\bigg(\dfrac{ {x}^{n} }{ {x}^{l} } \bigg) }^{ {n}^{2} - nl \: +  {l}^{2} } = 1}

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)
Similar questions