Math, asked by adityahiremath9470, 1 year ago

X=log 12 to the base 10,y=log 2 to the base 4 ×log 9 to the base 10 and z=log 0.4 to the base 10, fing: x-y-z

Answers

Answered by MaheswariS
31

\textsf{Given:}

\mathsf{x=log_{10}12}

\mathsf{y=log_{4}2\;log_{10}12=\frac{log_{10}9}{log_{2}4}}

\mathsf{y=\frac{log_{10}9}{2\,log_{2}2}=\frac{log_{10}9}{2}}

\mathsf{y=\frac{1}{2}log_{10}9}

\mathsf{y=log_{10}9^{\frac{1}{2}}=log_{10}3}

\mathsf{z=log_{10}0.4}

\textsf{Now,}

\mathsf{x-y-z}

\mathsf{=log_{10}12-log_{10}3-log_{10}0.4}

\textsf{Using}

\boxed{\mathsf{log\,M-log\,N=log\,\frac{M}{N}}}

\mathsf{=log_{10}(\frac{12}{3})-log_{10}0.4}

\mathsf{=log_{10}4-log_{10}0.4}

\mathsf{=log_{10}(\frac{4}{0.4})}

\mathsf{=log_{10}10}

\mathsf{=1}

\implies\boxed{\mathsf{x-y-z=1}}

Answered by soupals1upv
3

mn.......

.....

...

..

.

Attachments:
Similar questions