X=log tan t , y=log sin t
Answers
Answered by
0
Answer:
We are given, x=a(cost+logtan
2
t
)
and y=asint
Let differentiate x & y wrt t, we get,
dt
dy
=acost
&
dt
dx
=a
⎣
⎢
⎢
⎡
(−sint)+
tan
2
t
1
.sec
2
2
t
.
2
1
⎦
⎥
⎥
⎤
( by chain rule)
dt
dx
=a
⎣
⎢
⎢
⎡
−sint+
2sin
2
t
1cos
2
t
×
cos
2
2
t
1
⎦
⎥
⎥
⎤
=a
⎣
⎢
⎢
⎡
−sint+
2sin
2
t
cos
2
t
1
⎦
⎥
⎥
⎤
=a[−sint+
sint
1
]
dt
dx
=
sint
a(1−sin
2
t
=
sint
acos
2
t
now,
dx
dy
=
dt
dy
×
dx
dt
=
acos
2
t
acost
×sint=tant
again differentiate
dx
dy
wrt x.
dx
d
(
dx
dy
)=
dx
2
d
2
y
=sec
2
t.
dx
dt
dx
2
d
2
y
=sec
2
t×
acos
2
t
sint
[
dx
2
d
2
y
]
t=
3
π
=
a.cos
2
(π/3)
sec
2
(π/3).sin(π/3)
=
a.(1/2)
2
(2)
2
.(
3
/2)
[
dx
2
d
2
y
]
t=
3
π
=
a
8
3
Step-by-step explanation:
please mark me as brainliest
Similar questions
India Languages,
23 days ago
Social Sciences,
23 days ago
Hindi,
1 month ago
English,
1 month ago
English,
9 months ago